• Title/Summary/Keyword: Precision Press

Search Result 507, Processing Time 0.022 seconds

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

Optimization of intelligent prosthetic hands using artificial neural networks and nanoscale technologies for enhanced performance

  • Jialing Li;Gongxing Yan;Zefang Wang;Belgacem Bouallegue;Tamim Alkhalifah
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.369-383
    • /
    • 2024
  • Annular nano-electromechanical systems (NEMS) in intelligent prosthetic hands enhance precision by serving as highly sensitive sensors for detecting pressure, vibrations, and deformations. This improves feedback and control, enabling users to modulate grip strength and tactile interaction with objects more effectively, enhancing prosthetic functionality. This research focuses on the electro-thermal buckling behavior of multi-directional poroelastic annular NEMS used as temperature sensors in airplanes. In the present study, thermal buckling performance of nano-scale annular functionally graded plate structures integrated with piezoelectric layers under electrical and extreme thermal loadings is investigated. In this regard, piezoelectric layers are placed on a disk made of metal matrix composite with graded properties in three radials, thickness and circumferential directions. The grading properties obey the power-law distribution. The whole structure is embedded in thermal environment. To model the mechanical behavior of the structure, a novel four-variable refined quasi-3D sinusoidal shear deformation theory (RQ-3DSSDT) is engaged in obtaining displacement field in the whole structure. The validity of the results is examined by comparing to a similar problem published in literature. The results of the buckling behavior of the structure in different boundary conditions are presented based on the critical temperature rise and critical external voltage. It is demonstrated that increase in the nonlocal and gradient length scale factor have contradicting effects on the critical temperature rise. On the other hand, increase in the applied external voltage cause increase in the critical temperature. Effects of other parameters like geometrical parameters and grading indices are presented and discussed in details.

Application of artificial intelligence to improve the efficiency and stability of prosthetic hands via nanoparticle reinforcement

  • Jialing Li;Gongxing Yan;Zhongjian Tang;Saifeldin M. Siddeeg;Tamim Alkhalifah
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.385-399
    • /
    • 2024
  • NEMS (Nano-Electro-Mechanical Systems) devices play a significant role in the advancement of prosthetic hands due to their unique properties at the nanoscale. Their integration enhances the functionality, sensitivity, and performance of prosthetic limbs. Understanding the electro-thermal buckling behavior of such structures is crucial since they may be subjected to extreme heat. So, in this paper, the two-dimensional hyperbolic differential quadrature method (2D-HDQM) integrated with a four-variable refined quasi-3D tangential shear deformation theory (RQ-3DTSDT) in view of the trace of thickness stretching is extended to study electro-thermal buckling response of three-directional poroelastic FG (3D-PFG) circular sector nanoplate patched with piezoelectric layer. Aimed at discovering the real governing equations, coupled equations with the aid of compatibility conditions are employed. Regarding modeling the size-impacts, nonlocal refined logarithmic strain gradient theory (NRLSGT) with two variables called nonlocal and length scale factors is examined. Numerical experimentation and comparison are used to indicate the precision and proficiency related to the created procedure. After obtaining the outputs of the mathematics, an appropriate dataset is used for testing, training and validating of the artificial intelligence. In the results section will be discussed the trace associated with multiple geometrical and physical factors on the electro-thermal buckling performance of the current nanostructure. These findings are essential for the design and optimization of NEMS applications in various fields, including sensing, actuation, and electronics, where thermal stability is paramount. The study's insights contribute to the development of more reliable and efficient NEMS devices, ensuring their robust performance under varying thermal conditions.

The Study on the Buttons (centering around 19th-20th Centuries) (단추에 관한 연구 -19, 20세기를 중심으로-)

  • 이영란
    • Journal of the Korean Society of Costume
    • /
    • v.22
    • /
    • pp.263-276
    • /
    • 1994
  • The achievement of notable social reoforms attained during the period of 19th and 20th centuries needlessly speaking remodelded the social environmental into several different patterns such as :1) high industrialization 2) propensity to consume 3) up graded overall social stands. Accordingly the industrial world of the but-tons too established the mess production syhstem by breaking from convention of hand-craft work of 17th century. The raw materials used in the production line on buttons during the 20th century are almost all-kind of materials one can possibly named including cheap plastic which enabled production lines to produce cheaper but higher productivities of the buttons being produced, The design (incused design) used in the 19-20h centuries are : men landscape, sports features, birds, livestocks, bugs, or geomatric features, tec, 1, The classification o f the buttons by materials Techniques shapes colors marking (Incused design) used in the productionof buttons in the England United States of America Laska Italy france Denmark Japan and India are categolizzed as : natural raw materials and syntetical resines. 1) Of the natural raw materials used are : Matal Enamel Iodine Agate, Coral, Green jade(Jasper) Granite, Wood, Ivory, Horn and bone etc. 2) The sythetical resin used in the button in-dustries are : Artificial jewell glass Acrylic material Styroform Celluloid and Nylon etc. 2. The thecnique quoted in producing buttons are hand craft work inlay work precision casting press mosic dye etching, processing, engraving and embossed carving etc. 3. The major designs used in the buttons in -dustries are : Round shape however elliptical column angular and edge shape often used. 4. The colors used are : The multi-colors were highly used than mono-colored materials such as : Adjoining Color and Contrast Color. The highest consideration to be considered in choosing the colors for the buttons are harmonization and matching factor with the garment or dresses to be wore. 5. The major design(incused design) on the buttons are embodiment and the design were also used in order of abstractive-combination abstractive with has offers much surprising. The button industries during the 19th and 20th centuries were not only the determination factors those can judge the value of self-pride of Nation and which were far beyond the in-dustrial arts in those days but also highly refelected and influenced by cultural sense ideology and self-pride of the Nation of those period. The followings are details of the role of the buttons categolized in the order of functional ornamental and symbolical aspects : 1. The functional role : The functional role of the buttons were simply designed for dress how-ever the buttons beyond from this role of function now a days. 2. The ornamental role : The ornamental role of he button beyond from this role of the button were effectuated by : 1) shape materials colors 2) technique locations size and design (incused design) 3) The ramaterials used for buttons shall not be over looked because it is highly depends on the taste sense and combination of harmony with the garment to be wore. 4) The color of the buttons are made well contrasted with the color of garments just as in the case of other artistical area such as matchs with the color of garment of contrast with brigtness of colors contrasted as complementary color and so and so. 5) The technique being adoped are: precision casting press handcraft inlay work etching mosic etc,. Since the buttons are no longer a simple catching devise used to fasten together the different part of the dress but now it has formed own and occupied the independent role in the garment or dresses location can be de-termined and varying depending on the ideas of designers. The size of the buttons has no specific limits, However the variation has widely dependined on the entire circumperence rhythm contrast harmonization of the garments. 3. The symbolical role : Since the button is no longer a just a simple devise for catching and fastening device used fastening together the different part of the garments but now were built a independent area as major part of the Garment and well reflected all kinds of occupations political background cultural as-pect etc. on the buttons. The design of buttons in the western circles are more simplified but they are polished looks and their techniques of manufacturing are comination of both machanis and handcraft. The colors used in the buttons are pretty well harmonized with garment(dress). Almost all kind of materials can be used in the but-tons however materials used in the buttons are : Bone of livestocks ivory, turtle shell are no longer used because the prevention of cruely of animal. On the contraly the level of buttons indus-try of Korea is far to reach and catch up with the level of western circles. It is highly suggested therefore the but-tons industrial field of Republic of Korea shall place and encouragement in producing beter industrial environment of the buttons based on the traditional and cultural aspect of republic of Korea to produce both manufacturing of qulified and best designed and colored buttons.

  • PDF

Action effect: An attentional boost of action regardless of medium and semantics (의미적 표상 및 매개체와 무관한 단순 행동의 주의력 증진 효과)

  • Dogyun Kim;Eunhee Ji;Min-Shik Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.153-180
    • /
    • 2023
  • Previous research on the action effect had shown how simple action towards a stimulus can enhance the processing of that stimulus in subsequent visual search task (Buttaccio & Hahn, 2011; Weidler & Abrams, 2014). In four experiments, we investigated whether semantic representation of action word can induce the same attentional boost towards that stimulus and whether the type of action performed can modulate the action effect. In experiment 1, we replicated the same experimental paradigm displayed in previous studies. Participants were first shown an action word cue - "go" or "no". When the action cue was "go", participants were to press a designated key, but not to when the action cue was "no". Next, participants performed a visual search task, in which they reported the orientation of a tilted bar. The target could appear on top of the previously shown prime object (valid), or not (invalid). Reaction times (RTs) to the search task were measure for analysis and comparison, and the action effect had been replicated. In experiment 2, participants were instructed to respond with the keyboard for the action task, and to respond with the joystick for the visual search task. In experiment 3, participants were instructed not to press any key on the onset of prime, and then perform the visual search task to isolate the effect of semantic representation. Lastly, in experiment 4, participants were instructed to press separate keys for "go" and "no" on the onset of prime, and then perform the visual search task. Results indicate that semantic representation alone did not modulate the action effect, regardless of type of action and medium of action.

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.