• Title/Summary/Keyword: Precision Point

Search Result 1,337, Processing Time 0.029 seconds

Analysis of 3-D Cutting Process with Single Point Tool

  • Lee, Young-Moon;Park, Won-Sik;Song, Tae-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • This study presents a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool. The edge of a single point tool including a circular nose is modified to an equivalent straight edge, thereby reducing the 3-D cutting with a single point tool to the equivalent of oblique cutting. Then, by transforming the conventional coordinate systems and using the measurements of three cutting force components, the force components on the rake face and shear plane of the equivalent oblique cutting system can be obtained. As a result, the chip-tool friction and shear characteristics of 3-D cutting with a single point tool can be assessed.

  • PDF

Point Cloud Slicing Based on 2D Delaunay Triangulation (2D Delaunay Triangulation을 이용한 점군 절단)

  • Park, Hyeong-Tae;Chang, Min-Ho;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.127-134
    • /
    • 2007
  • Presented in the paper is an algorithm to generate a section curve by slicing a point cloud including tens of thousands of points. Although, there have been previous research results on the slicing problem, they are quite sensitive on the density variations of the point cloud, as well as on the local noise in the point cloud. To relive the difficulties, three technological requirements are identified; 1) dominant point sampling, 2) avoiding local vibration, and 3) robustness on the density changes. To satisfy these requirements, we propose a new slicing algorithm which is based on a node-sphere diagram. The algorithm has been implemented and tested with various examples.

Effects of Source Correlation on Plates Driven by Multi-point Random Forces (불규칙 작용힘들간의 Correlation이 평판의 진동레벨에 미치는 영향)

  • Oh, S.G.;Park, J.D.;Kwak, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.166-176
    • /
    • 1994
  • The problem of reducing the vibration level of elastic plates driven by multiple random point forces is analyzed in this study. First, the analytical solution for the vibration level of finite thin plates with four simply supported edges under the action of multiple random point force is derived. By assuming the plates to be lightly damped, an approximate solution for the vibration level of the plate is obtained. A numerical study is carried out to determine an optimal spacing distance between the multiple point forces in order to produce a relative minimum in the plate's vibration level. The optimal spacing distance is shown to depend on the given excitation band. The effects of wave cancellation in the near field of the multiple point forces are discussed by using the equivalence of certain stationary random responses and deterministic pulse responese.

  • PDF

Effects of Suspension Compliance and Chassis Flexibility in Handling Performance (현가장치의 유연성과 차체의 탄성효과가 조종안정성에 미치는 영향 분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.137-143
    • /
    • 1997
  • In this study, handling simulation of a passenger car is carried out to see the effects of suspension compliance, roll stabilizef bar and chassis flexibility. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi-link type. The following five DADS models are constructed and compared to verify the effects of suspension compliance and chassis flexibility during lane change. (1) Vdhicle model without hard point compliance and stabilizer, (2) Vehicle model with hard point compoiance, (3) Vehicle model with hard point compliance and stabilizer, (4) Vehicle model with hard point compoiance, stabilizer, and one vibration mode of the chaxxis. (5) Vehicle model with hard point compliance, stabilizer, and three vibration modes of the chassis. The result shows that hard point compliance and stabilizer are significant in roll angle, and the flexibility of the chassis affects the yaw angle and yaw rate.

  • PDF

Fatigue Life Estimation Using the Multi-Axial Multi-Point Load Counting Method under Variable Amplitude Loading (가변진폭하중하에서 다축-다점 하중 Counting method를 이용한 피로수명평가)

  • Lee, W.S.;Lee, H.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.22-27
    • /
    • 1997
  • In general, the load which acts on the structure is almost independent of time in many locations. In this case. It is difficult to estimate the life with the service load history, because the structure is on the multi- axial and multi-point loading states. In this study, the service load of the excavator which is widely used in industry field was calculated using measured cylinder pressures and displacements. The fatigue life was estimated using the multi-axial and multi-point load counting method. Service load history of 4 pin joint which act independently each other is yielded by mult-axial and multi-point load counting method. The stress spectrum is yielded by superposition of the results of FEM stress analysis applied unit load. Palm- gren-Miner's cumulative Damage is 0.000804 for Von Mises equivalent stress sequence by one side fillet weld S-N curve. This result agress with Bench test results. As a result of this study, the fatigue life esti- mation using the multi-axial and multi-axial and multi-point load counting method is useful.

  • PDF

Floating Point Converter Design Supporting Double/Single Precision of IEEE754 (IEEE754 단정도 배정도를 지원하는 부동 소수점 변환기 설계)

  • Park, Sang-Su;Kim, Hyun-Pil;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.72-81
    • /
    • 2011
  • In this paper, we proposed and designed a novel floating point converter which supports single and double precisions of IEEE754 standard. The proposed convertor supports conversions between floating point number single/double precision and signed fixed point number(32bits/64bits) as well as conversions between signed integer(32bits/64bits) and floating point number single/double precision and conversions between floating point number single and double precisions. We defined a new internal format to convert various input types into one type so that overflow checking could be conducted easily according to range of output types. The internal format is similar to the extended format of floating point double precision defined in IEEE754 2008 standard. This standard specifies that minimum exponent bit-width of the extended format of floating point double precision is 15bits, but 11bits are enough to implement the proposed converting unit. Also, we optimized rounding stage of the convertor unit so that we could make it possible to operate rounding and represent correct negative numbers using an incrementer instead an adder. We designed single cycle data path and 5 cycles data path. After describing the HDL model for two data paths of the convertor, we synthesized them with TSMC 180nm technology library using Synopsys design compiler. Cell area of synthesis result occupies 12,886 gates(2 input NAND gate), and maximum operating frequency is 411MHz.

Optimal Design of Metallic Sandwich Plates with Inner Dimpled Shell Subjected to 3-Point Bending (굽힘 하중을 받는 딤플형 금속 샌드위치판재의 최적설계)

  • Seong D.Y.;Jung C.G.;Yoon S.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.702-705
    • /
    • 2005
  • Metallic sandwich plates with Inner dimpled shell subjected to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high quality precision and bonded with same material skin sheets by resistance welding or adhesive bonding process. Optimized shape of inner dimple is a hemispherical shell to minimize weight without failure, including face yielding, face buckling and inner dimple buckling. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times than solid plates with same strength

  • PDF

A New Mode Switching Control for Fast Settling and High Precision Positioning (고속 세틀링과 고정밀 위치 제어를 위한 모드 변경 제어 기법)

  • Kim, Jung-Jae;Choi, Young-Man;Kim, Ki-Hyun;Gweon, Dae-Gab;Hong, Dong-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.1-4
    • /
    • 2006
  • Recently, with rapid development of digital media like semiconductor and large flat panel display, the manufacturing equipment is required to have high precision over large travel range. Moreover it should have high product throughput. To achieve high product throughput, a controller should perform fast point-to-point motion and high precision positioning after settling in spite of external disturbances or residual vibrations. We proposed a new mode switching control algorithm with an application to dual stage for long range and high precision positioning. The proposed algorithm uses a proximate time-optimal servomechanism for the fast settling and a time-delay controller for the high precision positioning. Experimental results show that the proposed method enables smooth mode switching and improves the settling time and the precision accuracy after settling by over than 33% and 45%, respectively.

  • PDF

A Variable Latency K'th Order Newton-Raphson's Floating Point Number Divider (가변 시간 K차 뉴톤-랍손 부동소수점 나눗셈)

  • Cho, Gyeong-Yeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.285-292
    • /
    • 2014
  • The commonly used Newton-Raphson's floating-point number divider algorithm performs two multiplications in one iteration. In this paper, a tentative K'th Newton-Raphson's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number divider unit. Also, it can be used to construct optimized approximate reciprocal tables.

Visual Servoing of manipulator using feature points (특징점을 이용한 매니퓰래이터 자세 시각 제어)

  • 박성태;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1087-1090
    • /
    • 2004
  • stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. In this paper we persent a visual approach to the problem of object grasping. First we propose object recognization method which can find the object position and pose using feature points. A robot recognizes the feature point to Object. So a number of feature point is the more, the better, but if it is overly many, the robot have to process many data, it makes real-time image processing ability weakly. In other to avoid this problem, the robot selects only two point and recognize the object by line made by two points. Second we propose trajectory planing of the robot manipulator. Using grometry of between object and gripper, robot can find a goal point to translate the robot manipulator, and then it can grip the object successfully.

  • PDF