• Title/Summary/Keyword: Precision Point

Search Result 1,337, Processing Time 0.035 seconds

Error analysis and performance test of the volumetric interferometer for three dimensional coordinate measurements (삼차원 좌표 측정을 위한 부피 간섭계의 오차분석 및 성능평가)

  • 이혁교;주지영;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.521-529
    • /
    • 2002
  • We have recently proposed the new concept of a phase-measuring volumetric interferometer that enables us to accurately measure the xyz-coordinates of the probe without metrology frames. The interferometer is composed of a movable target and a fixed photo-detector array. The target is made of point diffraction sources to emit two spherical wavefronts, whose interference is monitored by an array of photo-detectors. Phase shifting is applied to obtain the precise phase values of the photo-detectors. Then the measured phases are fitted to a geometric model of multilateration so as to determine the xyz-location of the target by minimizing least square errors. The proposed interferometer has been designed and built with a volumetric uncertainty of less than 1.0 $\mu\textrm{m}$ within a cubic working volume of side 120 mm. Here, in this paper, we also present error sources, an evaluated uncertainty, and test results from the prototype system. The self-calibration of two-dimensional precision metrology stages is applied to test the performance of the interferometer.

Synthesis and Characterization of CoAl2O4 Glazed Blue Ceramic Ink for Ink-Jet Printing (Ink-jet 프린팅용 CoAl2O4 고화도 나노 무기 잉크 제조 및 프린팅 특성평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Ink-jet printing technology has been widely attractive due to its facility for direct and fine printing on various substrates. Recent studies have focused on expanding the application of ink-jet printing technology from general consumer use and design companies to the prototype production of precision parts and parts manufacturing. The use of ink-jet printing technology in decorated tableware, tiles, and other ceramic products also has many advantages. The printing process is fast and can be adaptable to various kinds of objects because there is no direct contact point between the printer and the substrates to be printed. For application to ceramic product decoration, inks containing highly dispersed inorganic nano-pigments are required. Here we report the synthesis and characterization of blue $CoAl_2O_4$ nanopigment for ink-jet printing. Blue ceramic ink based on the obtained $CoAl_2O_4$ pigment was prepared by dissolving $CoAl_2O_4$ pigment in a mixed solution of ethylene glycol and ethanol with volume ratios of 7:3 and 8:2, respectively, to obtain the appropriate viscosity for ink-jet printing. The ink solution contained 15 wt% of $CoAl_2O_4$ pigment and Cetyltrimethyl ammonium bromide(CTAB) and Sodium dodecyl sulfate(SDS) as dispersive agents. The prepared blue ceramic ink was stably jetted and formed a sphere-shaped droplet from an ink-jet printer.

DEEP-South : Moving Object Detection Experiments

  • Oh, Young-Seok;Bae, Yeong-Ho;Kim, Myung-Jin;Roh, Dong-Goo;Jin, Ho;Moon, Hong-Kyu;Park, Jintae;Lee, Hee-Jae;Yim, Hong-Suh;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.75.4-76
    • /
    • 2016
  • DEEP-South (Deep Ecliptic patrol of the Southern sky) is one of the secondary science projects of KMTNet (Korea Microlensing Telescope Network). The objective of this project is twofold, the physical characterization and the discovery of small Solar System bodies, focused on NEOs (Near Earth objects). In order to achieve the goals, we are implementing a software package to detect and report moving objects in the $18k{\times}18k$ mosaic CCD images of KMTNet. In this paper, we present preliminary results of the moving object detection experiments using the prototype MODP (Moving Object Detection Program). We utilize multiple images that are being taken at three KMTNet sites, towards the same target fields (TFs) obtained at different epochs. This prototype package employs existing softwares such as SExtractor (Source-Extracto) and SCAMP (Software for Calibrating Astrometry and Photometry); SExtractor generates catalogs, while SCAMP conducts precision astrometric calibration, then MODP determines if a point source is moving. We evaluated the astrometric accuracy and efficiency of the current version of MODP. The plan for upgrading MODP will also be mentioned.

  • PDF

Rearranged DCT Feature Analysis Based on Corner Patches for CBIR (contents based image retrieval) (CBIR을 위한 코너패치 기반 재배열 DCT특징 분석)

  • Lee, Jimin;Park, Jongan;An, Youngeun;Oh, Sangeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2270-2277
    • /
    • 2016
  • In modern society, creation and distribution of multimedia contents is being actively conducted. These multimedia information have come out the enormous amount daily, the amount of data is also large enough it can't be compared with past text information. Since it has been increased for a need of the method to efficiently store multimedia information and to easily search the information, various methods associated therewith have been actively studied. In particular, image search methods for finding what you want from the video database or multiple sequential images, have attracted attention as a new field of image processing. Image retrieval method to be implemented in this paper, utilizes the attribute of corner patches based on the corner points of the object, for providing a new method of efficient and robust image search. After detecting the edge of the object within the image, the straight lines using a Hough transformation is extracted. A corner patches is formed by defining the extracted intersection of the straight line as a corner point. After configuring the feature vectors with patches rearranged, the similarity between images in the database is measured. Finally, for an accurate comparison between the proposed algorithm and existing algorithms, the recall precision rate, which has been widely used in content-based image retrieval was used to measure the performance evaluation. For the image used in the experiment, it was confirmed that the image is detected more accurately in the proposed method than the conventional image retrieval methods.

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

TDoA-Based Practical Localization Using Precision Time-Synchronization (정밀 시각동기를 이용한 TDoA 기반의 위치 탐지)

  • Kim, Jae-Wan;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.141-154
    • /
    • 2013
  • The technology of precise time-synchronization between signal receive devices for separation distance operation can be a key point for the technology with TDoA-based system. We propose a new method for the higher accuracy of system's time-synchronization in this paper, which uses OCXO and DPLL with high accuracy to achieve phase synchronization at 1 pps (pulse per second) of signal. And the method receive time value from a GPS satellite. Essentially, the performance of GPS with high accuracy refers to long-term frequency stability for its reliability. As per the characteristic, as the GPS timing signals are synchronized continuously, the accuracy of time-synchronization gets improved proportionally. Therefore, if the time synchronization is accomplished, the accuracy of the synchronization can be up to 0.001 ppb (part per billion). Through the improved accuracy of the time-synchronization, the measurement error of TDOA-based location detection technology is evaluated. Consequently, we verify that TDoA-based location measurement error can be greatly improved via using the improved method for time-synchronization error.

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

High-precision modeling of uplift capacity of suction caissons using a hybrid computational method

  • Alavi, Amir Hossein;Gandomi, Amir Hossein;Mousavi, Mehdi;Mollahasani, Ali
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-280
    • /
    • 2010
  • A new prediction model is derived for the uplift capacity of suction caissons using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA. The predictor variables included in the analysis are the aspect ratio of caisson, shear strength of clayey soil, load point of application, load inclination angle, soil permeability, and loading rate. The proposed model is developed based on well established and widely dispersed experimental results gathered from the literature. To verify the applicability of the proposed model, it is employed to estimate the uplift capacity of parts of the test results that are not included in the modeling process. Traditional GP and multiple regression analyses are performed to benchmark the derived model. The external validation of the GP/SA and GP models was further verified using several statistical criteria recommended by researchers. Contributions of the parameters affecting the uplift capacity are evaluated through a sensitivity analysis. A subsequent parametric analysis is carried out and the obtained trends are confirmed with some previous studies. Based on the results, the GP/SA-based solution is effectively capable of estimating the horizontal, vertical and inclined uplift capacity of suction caissons. Furthermore, the GP/SA model provides a better prediction performance than the GP, regression and different models found in the literature. The proposed simplified formulation can reliably be employed for the pre-design of suction caissons. It may be also used as a quick check on solutions developed by more time consuming and in-depth deterministic analyses.

Fabrication of a Micro-thermoelectric Probe (마이크로 프로브 기반 열전 센서 제작 기술)

  • Chang, Won-Seok;Choi, Tae-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1133-1137
    • /
    • 2011
  • A novel technique for the fabrication of a glass micropipette-based thermal sensor was developed utilizing inexpensive thermocouple materials. Thermal fluctuation with a resolution of ${\pm}0.002$ K was measured using the fabricated thermal probe. The sensors comprise unleaded low-melting point solder alloy (Sn) as a core metal inside a borosilicate glass pipette coated with a thin film of Ni, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with a precision of ${\pm}0.1$ K and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to $8.86{\mu}V$/K. The sensor we have produced is both cost-effective and reliable for thermal conductivity measurements of micro-electromechanical systems (MEMS) and biological temperature sensing at the micron level.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.