• 제목/요약/키워드: Precision Linear Stage

검색결과 139건 처리시간 0.028초

포토 마이크로 센서를 이용한 볼나사 구동 리니어 스테이지의 위치결정 실험 (A Position Decision Experiment in Ball-screw Driven Linear Stage using a Photomicrosensor)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.463-467
    • /
    • 2014
  • High precision machining technology has become one of the most important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though ball-screw driven linear stages equipped with linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a photo micro sensor as a home switch of a ball-screw driven linear stage by using a capacitance probe.

Switched Reluctance 형 비접촉 선형 스테이지를 위한 구동 알고리즘 (A Driving Algorithm for a Switched Reluctance type Contact-Free Linear Stage)

  • 이상헌
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.85-92
    • /
    • 2006
  • Recently in the field of precision positioning device, the contact-free stages are gaining focuses with their outstanding performances by eliminating mechanical frictions. This paper presents the driving algorithm for contact-free linear stage based on switched reluctance principle. The proposed driving algorithm has a similar structure of that of switched reluctance motor but this study has its own originality in terms of reducing the normal farces and force ripple at the same time. The simulation and experiment are executed to verify the proposed algorithm.

리니어모터 스테이지 진직도 향상을 위한 서보 시스템 개발 (Development of Servo-system for Straightness Improvement of Linear Motor Stage)

  • 강민식;최정덕
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.530-536
    • /
    • 2004
  • In this paper a servo-system is developed to improve straightness of linear motor stages. When a linear motor stage is used for high-precision linear motion systems, high precision straightness accuracy is necessary to meet the required position accuracy. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to the friction, a sliding mode control is applied. The effectiveness of the suggested mechanism and the control performance are illustrated along with some experimental results.

  • PDF

고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석 (Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment)

  • 김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

Decoupled Type의 초정밀 이중 서보의 제어에 관한 연구 (Control of Decoupled Type High Precision Dual-Servo)

  • 남병욱;김기현;최영만;김정재;이석원;권대갑
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.43-50
    • /
    • 2006
  • Recently, with rapid development of semiconductor and flat panel display, the manufacturing equipments are required to have large travel range, high productivity, and high accuracy. In this paper, an ultra precision decoupled dual servo (DDS) system is proposed to meet these requirements. And a control scheme for the DDS is studied. The proposed DDS consists of a $XY{\Theta}$ fine stage for handling work-pieces precisely and a XY coarse stage for large travel range. The fine stage consists of four voice coil motors (VCM) and air bearing guides. The coarse stage consists of linear motors and air bearing guides. The DDS is mechanically decoupled between coarse stage and fine stage. Therefore, both stages must be controlled independently and the performance of the DDS is mainly determined by the fine stage. For high performance tracking, the controller of fine stage consists of time delay control (TDC) and perturbation observer while the controller of coarse stage is TDC alone. With these individual controllers, two kinds of dual-servo control strategies are suggested: master-slave type and parallel type. By simulations and experiments, the performances of two dual-servo control strategies are compared.

비접촉 회전 스테이지에의 구동 원리로서의 횡자속 원주형 유도 방법 (Transverse flux circumferential induction method as a driving principle of the contact-free revolving stage)

  • 김효준;정광석
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.72-79
    • /
    • 2005
  • Compared with linear induction principle, the transverse flux circumferential induction principle is suggested as a driving mechanism of the revolving stage, which can rotate contactlessly without any supporting structure. The stage realizes the integrated motion of levitation, rotation, and planar perturbation, using the two-axis forces, normally directed force of the air-gap and tangential force, of the induction drivers mounted on the stator uniformly. In this paper, the force generating mechanism of the stage is described in detail. First, the various core shapes generating the transverse flux are analyzed to guarantee the proper thrust force. And the vector force intensity of the circumferential induction driver constituting the stage is compared with that of the linear induction driver. Especially it is shown that the magnetic force of the suggested system can be modeled with the linear equivalent model, including the test verification.

초정밀 스테이지의 강인 제어 (Robust Control for a Ultra-Precision Stage System)

  • 박종성;정규원
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1094-1101
    • /
    • 2006
  • Recently, a ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator and ultra-precision linear encoder, is designed and developed. The system transfer function of the ultra-precision stage system was derived from the step responses of the system using system identification tool. A $H_{\infty}$ controller was designed using loop shaping method to have robustness for the system uncertainty and external disturbances. For the designed controller, simulations were performed and it was applied to the ultra-precision stage system. From the experimental results it was found that this stage could be controlled with less than 5nm resolution irrespective of hysteresis and creep.

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF