• Title/Summary/Keyword: Precision Guided Weapon

Search Result 19, Processing Time 0.023 seconds

A Case Study on Analysis Methodology of Costal Defence Weapon System (해안방어 무기체계 효과분석 방법론: 사례연구를 중심으로)

  • Shin, Sang-Wook;Choi, Bong-Wan;Oh, Cheon-Kyun;Jo, Han-Moo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.124-134
    • /
    • 2019
  • As the types of North Korea's provocation are diverse and unexpectable in the costal area, ROK navy needs to develop countermeasures, such as costal defence guided rockets. Recently ROK navy developed the PKX-B which is equipped with the new 130 mm guided rocket. The most popular rockets are LOGIR for short range targets, 130 mm guided rocket for middle range targets and Spike-NLOS for long range targets. As various guided rockets are developed, it is required to develop a guided rocket analysis model and it's analysis methodology. In addition, these guided rockets can be installed on any platforms; ground vehicle, aircraft and warship. The paper proposes systematic methodology to estimate the operational effectiveness of costal defence guided rockets. A case study exploiting the ARENA simulation model is explained to demonstrate the implementation of the proposed methodology.

A Study on the Application of DFMEA for Safety Design of Weapon System (무기체계의 안전 설계를 위한 DFMEA 적용에 관한 연구)

  • Seo, Yang Woo;Oh, Young Il;Kim, Hee Wook;Kim, So Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, we proposed the DFMEA Implementation Method for safety design of Weapon System. First, we presented the process for DFMEA. And then, the case analysis of OOO missile was performed in accordance with the process presented. After defining the system requirements of OOO missile, failure definition scoring criteria was set. In order to clarify the definition of failure, the failure was classified into safety, reliability, maintainability and others. After performing the function analysis, the relationship matrix analysis was performed to identify the failure mode according to the function without omission. After clarifying the failure classification, mode of failure, cause of failure and effect were analyzed to calculate the severity, occurrence and detection values. After the action priority was judged, the recommended action according to the failure classification was identified for the determined action priority. The results of this study can be used as a relevant basis for the design reflection and resource re-allocation of stakeholders.

Analysis of Anti-jamming for GPS Guided Missile by GPS Reception Azimuth Control (GPS 수신 방위각 제어를 통한 GPS 유도무기 재밍대응 분석)

  • Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.677-682
    • /
    • 2016
  • Recently, because Global Positioning System (GPS) achieves accuracy for engagement of enemy targets, GPS guided weapons have a wide range of applications from land through sea to air. Especially, when GPS guided weapon is then launched, it reads current position and searches a course to the target. As we all know, because GPS signals are weak, these signals can be affected by interference. If jamming signal is strong enough, it can jam the receiver of GPS guided weapon. Therefore, anti-jamming technique is an important thing under these conditions. In this paper, the controlling azimuth angle was used to improve navigation performance of precision guided missile under jamming conditions. First of all, precision missiles by GPS positioning such as SLAM-ER and JDAM were investigated. Also, the azimuth cutoff angle of satellites for usable navigation under jamming signals was analyzed by experimental tests. As a result, we found that azimuth cutoff angle under 140 degree can help ensure continuous GPS reception under the missile guidance.

Life Test Design and Evaluation of Inertial Measurement Unit for Guided Weapons (유도무기용 관성측정기 수명 시험 설계 및 평가)

  • Jo, Kyoung Hwan;Moon, Sang Chan;Yun, Suk Chang;Kwon, Seung Bok;Kim, Do Hyung;Yang, Il Young
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.94-101
    • /
    • 2022
  • In this paper, we have obtained the acceleration coefficient of the IMU (Inertial Measurement Unit) to prove reliability by analyzing the characteristic of the MEMS IMU installed in guided weapon systems for overseas export and the operating environment of the guided weapon system. Additionally, based on designed life testing, we performed life tests on three the IMUs and demonstrated a target lifetime of 12 years.

Study about the Use of Airforce Robot in Next War (장차전의 공군용 로봇무기 활용성 연구)

  • Kim, Gyu-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.759-768
    • /
    • 2010
  • In next war, it will be expected that some requirement such as information acquisition, battlefield surveillance and control, increased power projection, precision attack by guided missile and electronic warfare may have special importance. The use of robot weapon system by Airforce will make up for some weak points of man based weapon system that Airforce currently has. And Airforce man/robot combined air vehicle weapon system can extend military operational theater and give its flexibility in next war where power, mobility and information should be all-in-one for military purpose.

Firing Data Calculation Algorithm for Smart Weapon System Under Non-standard Conditions (스마트무장 비 표준조건 사격제원 산출 알고리즘)

  • Moon, Kyujin;Jeong, Ui-Taek;Lee, Yongseon;Choi, Sungho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.233-240
    • /
    • 2022
  • The smart weapon system is a new weapon system of the future battlefield environment as a miniature guided weapon that performs precision strike missions through terminal phase guidance. However, it has small coverage to guide due to its low maneuverability because the smart weapon is controlled by using actuator of piezoelectric drive type due to the structural limitations. In this paper, we propose a firing data calculation algorithm under non-standard conditions to increase the effectiveness of the smart weapon. The proposed algorithm calculates firing data under non-standard conditions by calibrating firing data under standard conditions using information acquired in battlefield environments. The performance of the proposed algorithm is verified by numerical simulations under various conditions.

Analyzing the Modern Warfare and Weapon Systems Supported by Improved GPS Informations

  • Ko, Kwang-Soob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.234-239
    • /
    • 2015
  • This paper focuses on analyzing the modern warfare and weapon systems supported by improved GPS informations. The GPS capability was investigated through the real experimental test for verifying the most recent GPS features under its modernization processing. And then it was verified that such capabilities, accuracy and availability, of a typical L1, C/A code GPS receiver are equivalent to the military receiver's ones. It was also sure that the influence of GPS improved informations on NCW(Network-Centric Warfare), PGM(Precision Guided Munition) and C4SIR(Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance) should be increased and the modern warfare may be strongly dependent on GNSS informations.

A Study on the Design and Rectification Method of a KW class Power Converter Unit for an Aircraft Mounted Guided Missile (항공기 장착 유도탄의 KW급 전력변환장치 설계와 정류방식에 따른 연구)

  • Kim, Hyung-Jae;Jung, Jae-Won;Lee, Dong-Hyeon;Kim, Gil-Hoon;Moon, Mi-Youn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.99-104
    • /
    • 2022
  • Recently, the domestic demand for weapon systems based on aircraft platforms is gradually increasing. In particular, the demand for effective precision guided missile(PGM) which cruises for several hundred kilometers after launch to strike the ground target is rising drastically, but it is in the early stages of development, and research based on it are limited. This paper is a study on the power converter unit(PCU) within PGM which is mounted on an aircraft platform based on MIL-STD-1760, which is an interface between an aircraft and PGM. We investigated the electrical properties and structure of the umbilical connector, and the aircraft/store electrical interconnection system. Also, the focus on the design specifications of the PCU that supplies power were described. This result 3 phase AC input, which is the state for the guided simulation power supply in the state of being mounted on an aircraft that rectification method with power factor correction(PFC) compared to bridge rectifier circuit. In the future, it may be used as a basis for power supply design on aircraft mounted weapon systems.

The Design of a Small GNSS Receiver with Enhanced Interference Suppression Capability for High Mobility

  • Park, Yong-Hyun;Moon, Sung-Wook;Shin, Bong-Gyu;Oh, Jong-Su
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The applications of Global Navigation Satellite System (GNSS) receivers are becoming wider in various commercial and military systems including even small weapon systems such as artillery shells. The precision-guided munitions such as Small Diameter Bomb (SDB) of United States can be used for pinpoint strike by acquiring and tracking GNSS signals in high mobility situation. In this paper, a small GNSS receiver with embedded interference suppression capability working under high dynamic stress is developed which is applicable to the various weapon systems and can be used in other several harsh environments. It applies a kind of matched filter and multiple correlator schemes for fast signal acquisition and tracking of even weak signals and frequency domain signal processing method to eliminate the narrowband interference. To evaluate the performance of the developed GNSS receiver, the test scenario of high mobility and interference environment with the GNSS simulator and signal generator is devised. Then, the signal acquisition time, navigation accuracy, sensitivity, and interference suppression performances under high dynamic operation are evaluated. And the comparison test with the commercial GNSS receiver which has high sensitivity is made under the same test condition.

Research on Local and Global Infrared Image Pre-Processing Methods for Deep Learning Based Guided Weapon Target Detection

  • Jae-Yong Baek;Dae-Hyeon Park;Hyuk-Jin Shin;Yong-Sang Yoo;Deok-Woong Kim;Du-Hwan Hur;SeungHwan Bae;Jun-Ho Cheon;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.41-51
    • /
    • 2024
  • In this paper, we explore the enhancement of target detection accuracy in the guided weapon using deep learning object detection on infrared (IR) images. Due to the characteristics of IR images being influenced by factors such as time and temperature, it's crucial to ensure a consistent representation of object features in various environments when training the model. A simple way to address this is by emphasizing the features of target objects and reducing noise within the infrared images through appropriate pre-processing techniques. However, in previous studies, there has not been sufficient discussion on pre-processing methods in learning deep learning models based on infrared images. In this paper, we aim to investigate the impact of image pre-processing techniques on infrared image-based training for object detection. To achieve this, we analyze the pre-processing results on infrared images that utilized global or local information from the video and the image. In addition, in order to confirm the impact of images converted by each pre-processing technique on object detector training, we learn the YOLOX target detector for images processed by various pre-processing methods and analyze them. In particular, the results of the experiments using the CLAHE (Contrast Limited Adaptive Histogram Equalization) shows the highest detection accuracy with a mean average precision (mAP) of 81.9%.