• Title/Summary/Keyword: Precision Guidance

Search Result 96, Processing Time 0.031 seconds

Modeling of Lateral Dynamics of a Moving Web by Using the System Identification Technique (System Identification 기법을 이용한 이송중인 웹의 사행 거동에 대한 모델링)

  • 권순오;김상훈;신기현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.624-627
    • /
    • 2002
  • Experimental study showed that the existing mathematical model doesn't fully describe the lateral motion of a moving web fur different operating conditions. So, a physically interpretable model of lateral motion of a moving web in a typical web guidance system, operated at Konkuk Univ., was developed using the system identification technique. A well-known Least Square Method based on ARX model was used for the system identification. Lateral displacement of the web was measured at the exit of each span by infrared sensors. The model obtained from identifying a linear time-invariant system for a typical operating condition yields an improved prediction capability of the lateral dynamics of the moving web compared to other mathematical models proposed in literature.

  • PDF

A Study on Improved Mechanism of AGV System (AGV시스템의 메커니즘 개량화 연구)

  • Song, Jun-Yeop;Lee, Seung-U;Kim, Gap-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • In this research, we have developed a load/unload device capable of correcting the position automatically. Characteristic technologies such as compensation, control, guidance and communication have been modified and implemented on an existing electromagnetic guided AGV, helping to realize open system and distributed cooperation. We have applied the developed AGV with remote control and heterogeneous load/unload mechanisms in a machining system composed of various equipment such as machining centers, CMN and AS/RS and found that the AGV provided position error within $\pm$2mm.

  • PDF

Vibration-Analysis of rubber-tired AGT light rail vehicle (고무차륜 AGT 경량전철 차량의 진동해석)

  • Kim Y.S.;Jeon R.G.;Lim T.K.;Lee J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.39-42
    • /
    • 2005
  • Dynamic model of the Korea standardized rubber-tired AGT light rail vehicle, and boundary conditions between vehicle and infrastructures (running track, guidance rail) were defined to analyze vehicular vibration behaviors occurred at the worst condition. Using the commercialized software RecurDyn, vibration accelerations of car body and bogies were analyzed. and, based on the ISO standard 2631-1, the vibration characteristic test is performed in the test track. As the results, the Korea standardized rubber-tired AGT light rail vehicle satisfied the ISO standard criteria and design requirement.

  • PDF

Current Pharmacogenetics in Psychiatry (정신의학에서의 약물유전학 현황)

  • Kim, Il Bin;Lee, Yu Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Pharmacogenetics is opening a new era of precision medicine in psychiatry. Drug-metabolizing enzymes are characterized by genetic polymorphisms, which render a large portion of variability in individual drug metabolism. Dose adjustment based on pharmacogenetics knowledge is a first step to translate pharmacogenetics into clinical practice. However, diverse factors including cost-effectiveness should be addressed to provide clinical recommendation. To address current challenges in pharmacogenetics testing in psychiatry, this review provides an update regarding genotyping (SNP analysis, array, and next-generation sequencing), genotype-phenotype correlations, and cost-effectiveness. The current updates on pharmacogenetics in psychiatry will provide guidance for both clinician and researchers to have a consensus in harmonizing efforts to advance the pharmacogenetics field in a part of precision medicine in psychiatry.

Performance of AMI-CORBA for Field Robot Application

  • Syahroni Nanang;Choi Jae-Weon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.384-389
    • /
    • 2005
  • The objective on this project is to develop a cooperative Field Robot (FR), by using a customize Open Control Platform (OCP) as design and development process. An OCP is a CORBA-based solution for networked control system, which facilitates the transitioning of control designs to embedded targets. In order to achieve the cooperation surveillance system, two FRs are distributed by navigation messages (GPS and sensor data) using CORBA event-channel communication, while graphical information from IR night vision camera is distributed using CORBA Asynchronous Method Invocation (AMI). The QoS features of AMI in the network are to provide the additional delivery method for distributing an IR camera Images will be evaluate in this experiment. In this paper also presents an empirical performance evaluation from the variable chunk sizes were compared with the number of clients and message latency, some of the measurement data's are summarized in the following paragraph. In the AMI buffers size measurement, when the chuck sizes were change, the message latency is significantly change according to it frame size. The smaller frame size between 256 bytes to 512 bytes is more efficient fur the message size below 2Mbytes, but it average performance in the large of message size a bigger frame size is more efficient. For the several destination, the same experiment using 512 bytes to 2 Mbytes frame with 2 to 5 destinations are presented. For the message size bigger than 2Mbytes, the AMI are still able to meet requirement far more than 5 clients simultaneously.

  • PDF

Precision nutrition: approach for understanding intra-individual biological variation (정밀영양: 개인 간 대사 다양성을 이해하기 위한 접근)

  • Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In the past few decades, great progress has been made on understanding the interaction between nutrition and health status. But despite this wealth of knowledge, health problems related to nutrition continue to increase. This leads us to postulate that the continuing trend may result from a lack of consideration for intra-individual biological variation on dietary responses. Precision nutrition utilizes personal information such as age, gender, lifestyle, diet intake, environmental exposure, genetic variants, microbiome, and epigenetics to provide better dietary advices and interventions. Recent technological advances in the artificial intelligence, big data analytics, cloud computing, and machine learning, have made it possible to process data on a scale and in ways that were previously impossible. A big data platform is built by collecting numerous parameters such as meal features, medical metadata, lifestyle variation, genome diversity and microbiome composition. Sophisticated techniques based on machine learning algorithm can be used to integrate and interpret multiple factors and provide dietary guidance at a personalized or stratified level. The development of a suitable machine learning algorithm would make it possible to suggest a personalized diet or functional food based on analysis of intra-individual metabolic variation. This novel precision nutrition might become one of the most exciting and promising approaches of improving health conditions, especially in the context of non-communicable disease prevention.

Performance Improvement Technique of Three-Dimensional Guidance Law Suitable for Ammunition (포발사 탄약에 적합한 3차원 유도법칙의 성능개선 기법)

  • Shin, Seung-Je;Kim, Whan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.631-638
    • /
    • 2018
  • In this paper, we propose a method to improve the performance by guidance technique and applying it to the precision guided ammunition. The proposed method is a technique designed to reduce the target error of ammunition by reducing the projectile error without analyzing the motion characteristics of the shot. This technique is applied to the moving average filter technique which is widely used as signal processing technique to reduce the fluctuation of the output of the inboard mounting inertial sensor caused by the rotation and the coning motion of the ammunition. In order to compare the performance of the applied technique including the simple 3D guided control technique and the proposed improvement technique. It is confirmed that the application of this technique improves the accuracy of impact of the cannon - launched ammunition with severe environmental conditions and irregular motion characteristics unlike the missile.

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Decision Analysis System for Job Guidance using Rough Set (러프집합을 통한 취업의사결정 분석시스템)

  • Lee, Heui-Tae;Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.387-394
    • /
    • 2013
  • Data mining is the process of discovering hidden, non-trivial patterns in large amounts of data records in order to be used very effectively for analysis and forecasting. Because hundreds of variables give rise to a high level of redundancy and dimensionality with time complexity, they are more likely to have spurious relationships, and even the weakest relationships will be highly significant by any statistical test. Hence cluster analysis is a main task of data mining and is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups. In this paper system implementation is of great significance, which defines a new definition based on information-theoretic entropy and analyse the analogue behaviors of objects at hand so as to address the measurement of uncertainties in the classification of categorical data. The sources were taken from a survey aimed to identify of job guidance from students in high school pyeongtaek. we show how variable precision information-entropy based rough set can be used to group student in each section. It is proved that the proposed method has the more exact classification than the conventional in attributes more than 10 and that is more effective in job guidance for students.

Changes in Balance Characteristics Affected by the Visual Information during Single Leg Stance (외발서기 시 시각정보 차단에 따른 인체 균형 특성 변화 분석)

  • Park, Jung-Hong;Kim, Gwang-Hoon;Youm, Chang-Hong;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1323-1329
    • /
    • 2011
  • The purpose of study was to analyze how the visual information affects balance control of individuals during single leg stance. A total of 27 young normal people (20 males and 7 females, age: $13.7{\pm}2.6$, height: $162.3{\pm}13.2$ cm, weight: $53.9{\pm}13.9$ kg) was voluntarily involved in the experiment. The subjects were requested to maintain balance for 20 seconds with eyes both open and closed on a force plate and then foot ground reaction data were collected for that duration. Results showed that mean velocity of COP in closed eyes condition was larger 1.84 times than that of the open-eyes condition and range of vertical angle was increased approximately one degree in the closed eyes condition. To accomplish a balance, the frequency power in mediolateral and anteroposterior components of the foot-ground reaction force was increased by 1.3~1.4 times. Consequently, visual absence during single leg stance can result in critical loss of balance and lead to instability of body control.