• 제목/요약/키워드: Precision Forging

검색결과 342건 처리시간 0.023초

금속 적층제조기술의 국내외 개발동향과 기술적 이슈 (International Development Trend and Technical Issues of Metal Additive Manufacturing)

  • 강민철;예대희;고근호
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.9-16
    • /
    • 2016
  • Metal parts are produced by conventional methods such as casting, forging and cutting, extrusion, etc. However, nowadays, with additive manufacturing (AM), it is possible to directly commercialize by means of stacking of equipment to the 3D drawing and use of high precision tools such as laser source. Thus, drawing of materials is an important aspect in delivering good products. AM deals with production of lighter aircraft parts and few more three-dimensional molds, it wish to manufacture special medical parts and want to steadily expand the new market area. The cost of related equipment and materials are still expensive and difficult to obtain on a mass production. However, the ability to make changes and lead the innovation in the paradigm of traditional manufacturing process is still effective. In this paper, we introduce metal AM and the principles of the related devices, metal powder production process, and their application.

긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구 (A Study on the Forming Process Development off Long-neck Flange Using a Long Pipe)

  • 최간대;강우진;배원병;조종래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.699-704
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. New the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some deflects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical terming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions fur forming a long-neck flange are simulated by FE analyses with a commercial cede DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion fur forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any deflects.

  • PDF

다단포머-볼트류 공정 및 금형설계 자동화 시스템 개발 (A Study of Automated Process Planning and Die Design for Multi Former-Bolt Products)

  • 박철우;강정훈;이준호;김철;김문생;최재찬
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.29-38
    • /
    • 2003
  • This paper deals with an automated computer-aided process planning and die design system with which designer can determine operation sequences even after only a little experience in process planning and die design of multi former-bolt products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge base consisting of design rules is built. Knowledge fur the system is formulated from plasticity theories, empirical results and the empirical knowledge of field experts. Programs for the system have been written in AutoLISP for AutoCAD with a personal computer. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and die design module considers several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. It can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution and the level of the required forming loads by controlling the forming ratios. The system uses 2D geometry recognition and is integrated with the technology of process planning, die design, and CAE analysis. The standardization of die parts for multi former-bolt products requiring a cold forging process is described. The system developed makes it possible to design and manufacture multi former-bolt products more efficiently.

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구 (A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load)

  • 최승일;지명국;이대철;정효민;정한식
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.

열간단조 금형강의 열충격특성연구 (Analysis of Thermal Shock in Tool Steels for Hot Forging)

  • 김정운;김봉준;조이석;문영훈
    • 열처리공학회지
    • /
    • 제14권3호
    • /
    • pp.155-159
    • /
    • 2001
  • The thermal shock resistance has been investigated and compared in three hot-work tool steels. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. In this study, new test method is proposed to measure the thermal shock resistance. New method is basically based on Uddeholm' thermal shock test but some modification has been properly applied. Based on these results, some critical temperature($T_{fractures}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. The specific values of ${\Delta}T$, the temperature difference between holding temperature and $T_{fractures}$, has been successfully used as a measure of the thermal shock resistance in this study, the results showed that the thermal shock method used in this study was properly modified.

  • PDF

Fine Blanking의 가장자리 Bridge 최소화 방법에 관한 연구 (A Study on Edge Bridge Minimization of Fine Blanking Process)

  • 김기태
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.108-113
    • /
    • 2013
  • Industrialization and modernization of the beginning of the IT industry is growing very fast. Since telecommunications industry was developed rapidly, technologies about miniaturization and high-precision of parts have been actively developed to lead information revolution. generally, the entire shear surface of the product applying fine blanking technology must be very precise. Fine blanking is used to save cost by avoiding post-processing of the product. When using press blanking, it spends a lot of money on the production by using many post-processing. Fine blanking typically used in 0.5~18 mm thick steel plate. Because a lot of post-processing cost can be used to process, except for fine blanking. In order to develop components "CHANCE CONTENTS" in the fine blanking process, the purpose of this study is to minimize the edge of the bridge, secured 95% of the material thickness of the shear surface using the 1.6 mm thickness of the material SPCC. Blanking process by introducing after changing thickness through forging process, due to change in vee-rring force and counter force, the experimental amount of depressions and flatness and the shear surface were analyzed.

주행 안전을 위한 자전거 기어의 프레스금형에 관한 연구 (A Study on the Mold System of Bicycles Gear for Driving Safety)

  • 정연승
    • 대한안전경영과학회지
    • /
    • 제20권4호
    • /
    • pp.1-6
    • /
    • 2018
  • Recently, bicycle has means of effective healthy transportation, and riding the bicycles is considered as popular recreational and sporting activities. Also, the saddle, steering system, driving device and braking device are researched briskly because of consumer's need for driving performance and comfort. Especially, the importance of a cassette responsible for transmission function by transmitting power to the drive shaft through the chain is very focused. The writer conducted structural analysis for the sprocket of each level using the ANSYS widely used for the analysis. Speed shifting performance was enhanced by minimization / simplification of shifting point through a sort of tooth profile of the cassette. By partitioning a clear value type and other shifting point, it has been modified to enable smooth speed-shifting. In addition, as titanium precision forming process, this study studied the molding technique by blanking and dies forging for mass production of the cassette. so it could be expected that the entire drive train would utilize that in the future. The stamping process capability for thin materials for the mass production of the sprockets is applicable to producing automobile parts, so lightweight component production is likely to be possible through that, for the safety of driving.

연소제어시스템과 열효율 향상 방안에 관한 연구 (A study on the Combustion Control System and Thermal Efficiency)

  • 장용남;박수홍
    • 한국전자통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.645-650
    • /
    • 2010
  • 본 연구에서 울산 현대중공업 및 사천 유니슨에 설치사용 중인 공업용로의 연소문제 및 시스템을 분석하고 열효율 개선방안을 제시하여 연료절감 및 생산성 향상에 도움이 되고자 한다. 단조산업에 사용 중인 공업용로는 원소재의 가열 및 재료의 특성향상을 위한 설비로 운전조건 및 연소시스템에 따라 연료의 사용량 및 재료의 특성에 지대한 영향을 줄 수 있다. 따라서 현대중공업에 설치운전 중인 100톤 가열로 및 열처리로의 연소시스템의 특성을 분석하였다. 통상적으로 각 가열장치에 설치된 버너(Burner)는 용량에 맞는 공연비를 가지며 버너가 작동할 수 있는 Turndown ratio를 가지고 있다. 이는 각각의 공업용로 특성을 정하는 것으로서 가열성능 및 온도정밀도에 지대한 영향을 미친다. 용량이 큰 버너를 설치한 열처리로는 가열성능은 향상시킬 수 있어도 유지구간에서의 온도정밀도를 얻기 힘들다. 이에 버너의 성능을 최대한 발휘할 수 있도록 연소시스템을 개선하여 각 가열구간에 맞는 연소특성을 적용 분석한 현대중공업의 가열로 및 열처리로를 예시로 연료의 절감 및 온도정밀도를 향상시키도록 본 연구에서 방안을 제시하였다.

평점 빈도 가중치 기반 기준선 예측기의 추천 성능 향상을 위한 편향 기반 추천기 (Bias-Based Predictor to Improve the Recommendation Performance of the Rating Frequency Weight-based Baseline Predictor)

  • 황태규;김성권
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.486-495
    • /
    • 2017
  • 협업 필터링(CF, Collaborative Filtering)은 추천을 수행하기 위해 필요한 비용(시간/공간 복잡도 등)이 현실 데이터에 적용하기에는 한계가 있다. 평점 빈도 가중치 기반의 Baseline Predictor(RFWBP, Rating Frequency Weight-based Baseline Predictor)는 정확도가 기존의 방법과 근사하며, 비용을 크게 줄일 수 있는 효율적인 방법 중 하나이다. 그러나 효율성을 고려해 RFWBP만 사용할 경우, 1)학습을 수행하지 않기 때문에 발생되는 오차를 감소시킬 수 없고, 2)적합한 추천 목록을 작성하기 위한 조건이 없기 때문에 모두 추천했다. 본 논문은, 제시된 문제를 해결하기 위한 BBP(Bias-Based Predictor)를 제안한다. BBP는 Bias를 보정하여 오차의 범위를 감소시킴으로써 1)을 해결했고, 선호에 적합한 추천 목록 작성을 위한 몇 가지 Case를 정하고, 추천 목록을 구성함으로써 2)를 해결하였다.