• Title/Summary/Keyword: Precision Forging

Search Result 342, Processing Time 0.033 seconds

Study on Cold Forward Extrusion Formality Analysis along with Tool Entrance Angle of Helical Gear for Electronic Parking Brake Using Finite Element Analysis (유한요소해석을 이용한 전자식 주차브레이크용 헬리컬 기어의 금형 도입부 각도에 따른 냉간 전방압출 성형성 분석에 관한 연구)

  • Kim, Byeong Kil;Lee, Hyun Goo;Cho, Jae Ung;Jeong, Kwang Young;Cheon, Seong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.977-982
    • /
    • 2015
  • This study uses finite element analysis to evaluate the forming load of tool entrance angle of the cold forward extrusion molding process of helical gear; this can replace the spur gear applied to the Electronic Parking Brake (EPB) system. A cold forging process is often used in the automobile industry as well as in various industrial machines due to its high efficiency. Finite element analysis is frequently used when interpreting results of the forging process. Formality was evaluated by calculating tooth profile filling rate of helical gear. Change in required forming load was investigated when the entrance angle of forward extrusion tool die was changed from $30^{\circ}$ to $60^{\circ}$, also by finite element analysis. We suggest suitable tool entrance angles.

A Study on Distortion Induced by Elasticity and Heat Treatment of Automotive Bevel Gears (자동차용 베벨 기어의 탄성변형과 열처리변형에 관한 연구)

  • Kim H. Y.;Kim M. G.;Cho J. R.;Bae W. B.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.170-173
    • /
    • 2004
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to elastic and heat treatment of bevel gears Is investigated. Distortions of forged gears, machined gears and die aremeasured and compared. Numerical analysis is used to simulate the complete cold forged process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

Analysis of dimension precision of mobile device components according to the clearance in blanking process using CAE (CAE를 활용한 모바일 디바이스 부품의 블랭킹 공정 시 클리어런스에 따른 치수정밀도 분석)

  • Kim, Tae-Min;Choi, Doo-Sun;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • For one decades, mobile devices components were made with plastic material, but environmental problems have recently replaced them with metal materials such as aluminum. Generally, aluminum components are mostly produced through cutting, but this process has limitations such as productivity and chip recycling. For this reason, many researches are conducted to improve productivity by replacing with the forging press process for manufacturing mobile device components. After forging process, the flash is remained and it is necessary to eliminate the flash from the final shape of components. In this paper, one-sided clearance for blanking aluminum material wes selected for parameter affected to the dimensional precision. Because the clearance is the most important parameter in blanking process. Deriving the clearance of blanking process for high dimensional precision, five level of one-sided clearance is selected and CAE is used to analyze the dimensional precision for each case.