• Title/Summary/Keyword: Precision Electronics

Search Result 915, Processing Time 0.028 seconds

Robust Adaptive Precision Position Control of PMSM

  • Ko Jong-Sun;Ko Sung-Hwan;Kim Yung-Chan
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.347-355
    • /
    • 2006
  • A new control method for precision robust position control of a permanent magnet synchronous motor (PMSM) is presented. In direct drive motor systems, a load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in using a fixed gain to solve this problem. However, the motor flux linkage cannot be determined precisely for a load torque observer. Therefore, an asymptotically stable adaptive observer base on a deadbeat observer is considered to overcome the problems of unknown parameters, torque disturbance and a small chattering effect. To find the critical parameters the system stability analysis is carried out using the Liapunov stability theorem.

Development of intelligent grinding system for aspherical surface machining (비구면 가공용 지능형 연삭 시스템 개발)

  • Baek, Seung-Yub;Lee, Hae-Dong;Kim, Sung-Chul;Lee, Eun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1099-1104
    • /
    • 2004
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system.

  • PDF

A Study on the LQG Precision Tension Control of a Dancer System for a Production of Printed Electronics in Roll-to-roll Systems (Roll-to-roll 시스템에서 인쇄전자 생산을 위한 댄서 시스템의 LQG 정밀 장력 제어에 대한 연구)

  • Seong, Jin-Woo;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.65-73
    • /
    • 2009
  • For mass production of printed electronics in roll-to-roll fashion, precision tension control is important to reduce register errors. Register error should be minimized within several to tens of microns for many electronic devices to be manufactured through printing technology. In order to achieve this goal, tension disturbance must be attenuated before printing process within a certain range. In this paper, a certain tension range which allows maintaining register error within 10 micron was defined with specific operating conditions. A LQG controller was proposed instead of the conventional PI controller for precision tension control using a multivariable feedback. A guideline to determine design parameters for calculating LQ gain was proposed. The proposed LQG controller was compared to both PI controller and LQ regulator with white noise by numerical simulations. Results showed that the proposed LQG controller was effective for attenuating tension disturbance with white noise.

High Precision Path Generation of an LCD Glass-Handling Robot

  • Cho, Phil-Joo;Kim, Hyo-Gyu;Kim, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2311-2318
    • /
    • 2005
  • Progress in the LCD industries has been very rapid. Therefore, their manufacturing lines require larger LCD glass-handling robots and more precise path control of the robots. In this paper, we present two practical advanced algorithms for high-precision path generation of an LCD glass-handling robot. One is high-precision path interpolation for continuous motion, which connects several single motions and is a reliable solution for a short robot cycle time. We demonstrate that the proposed algorithm can reduce path error by approximately 91% compared with existing algorithms without increasing cycle time. The second is real-time static deflection compensation, which can optimally compensate the static deflection of the handling robot without any additional sensors, measurement instruments or mechanical axes. This reduces vertical path error to approximately 60% of the existing system error. All of these algorithms have been commercialized and applied to a seventh-generation LCD glass-handling robot.

  • PDF

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Development of an Inchworm type Actuator for an Ultra Precise Linear Stage (초정밀 리니어 스테이지용 인치웜 타입 구동장치 개발)

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, Jung-Kee;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.309-312
    • /
    • 2002
  • Precision stage is essential device for semiconductor equipments, fiber optic assembly systems and micro machines. In this paper, we develop a piezo-electric inchworm type actuator for long stroke ultra precision linear stages, and implement a controller to interface with commercial motion controllers. It provides fast implementation of precise position control system substituting for rotary motor. In the future, using a laser interferometer as a position sensor, we plan to implement a nano meter precision stage.

  • PDF