• Title/Summary/Keyword: Precision Arm

Search Result 209, Processing Time 0.037 seconds

Development of a Parallel-Serial Robot Arm for Propeller Grinding (프로펠러 연삭작업을 위한 병렬-직렬 로보트 암 개발)

  • Lee, Min Ki;Choi, Byung Oh;Jung, Jong Yoon;Park, Kun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.146-158
    • /
    • 1996
  • This paper develops a robot arm for propeller blade grinding. The grinding work requires a high stiffness robot arm to reduce deformation and vibration which are generated during machining operation. Conventional articulated robots have serial connecting links from the base to the gripper. Thus, they have very weak structure to the stiffness for grinding operation. Stewart Platform is a typical parallel robotic mechanism with very high stiffness but it has small work space and large installation space. This research proposes a new grinding robot arm by combining parallel mechanism with serial mechanism. Therefore, the robot has large range of work space as well as high stiffness. This paper introduces the automatic system for propeller grinding utilizing the robot and the design of proposed robot arm.

  • PDF

A FORCE/POSITION CONTROL FOR TWO-ARM MOTION COORDINATION AND STABILITY ROBUSTNESS ANALYSIS

  • 최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.215-219
    • /
    • 1992
  • This paper presents a motion coordination of two robot manipulators coordinating an object. To coordinate the object, a force/position control scheme in a mode of leaer/follower is devised. The dynamics of the object are incorporated into the dynamics of the leader arm, which yields a reduced order model of two arm system. In order to regulate interaction forces between two arm, the dynamics of the follower arm are expressed as force dynamic equations such that a novel direct forces between two arms and two different type of bounded input disturbances, boundedness and asymptotic stability results based on a proposed Lyapunov function are shown. Also, a sufficient condition for a stability robustness is derived based on the Lyapunov approach.

Design of an Arm Section for a Direct Drive SCARA Robot having the Minimum Cycle Time (직접구동방식 수평다관절형 로봇의 최소 싸이클시간을 갖는 로봇팔의 단면설계)

  • Kang, B.S.;Park, K.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.165-172
    • /
    • 1995
  • Many algorithms to enhance a speed performance of a robot have been studied, but it's rare to consider disign aspect of a robot arm for time optimal problem. In this paper, section demensions of a robot arm and a velocity profile of an end-effector were optimally designed to minimize the cycle time. Capacity of actuators, deflections of end-effector, and a fundamental natural frequency of the robot arm were constrained in optimal design. For a given path with a trapezoidal velocity profile, torques of each joint were calculated using the inverse kinematics and dynamics. For the SCARA type robot which is mainly used for assembly tasks, the time optimal design of each robot arm id presented with the above constraints.

  • PDF

Optimal Design of Robot-Arm using Design of Experiments (실험 계획법을 이용한 로봇 암부위 최적설계)

  • Chung W.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.395-396
    • /
    • 2006
  • This paper presents the optimal design of Robot-Arm part use Design of Experiment(DOE). The DOE(Design of Experiment)was conducted to find out main effect factors for design of Robot-Arm part. In this design of Robot-Arm, 5 control factors include numbers of 4 level are selected and we make out L16 orthogonal array. Using this orthogonal array, find out optimal value and main effect factors of object function for design of Robot-Arm part by 16 times of test. We evidence this optimal value by using CATIA V5 Analysis.

  • PDF

The analysis of the dynamic characteristics of the tension arm in tape transporting system (테이프 주행계 텐션암의 동특성해석)

  • Kim, Joong-Bae;Ryu, Doo-Hyun;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.164-172
    • /
    • 1994
  • The purposes of the study are to formulate a mathematical model of mechanical tension arm system including supply reel and capstan system, and to simulate dynamic reponse according to parameter variations of the componests in tension arm system. Experiments were carried out in order to prove the validity of the mathematical model. From the results of simulations and experiments, dynamic responses of tape tension and displacement of tension post were analyzed during entire playing mode and they showed the basic characteristics of the tension arm system.

  • PDF

Precision Control of a Torque Standard Machine Using Fuzzy Controller (퍼지제어기를 이용한 토크 표준기의 정밀제어)

  • Kim, Gab-Soon;Kang, Dae-Im
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.46-52
    • /
    • 2001
  • This study describes the precision control of the torque standard machine using a self-tuning fuzzy controller. The torque standard machine should generate the accurate torque for calibrating a torque sensor. In order to reduce the relative expanded uncertainty of the torque standard machine, when a weight is hanged to the end of the torque arm for generating the torque, the sloped torque arm should be accurately controlled to the horizontal level. If the slope of the torque arm is larger from the inaccurate control, the uncertainty of the torque standard machine due to control will be larger. This applies the inaccurate torque to a torque sensor to calibrate, and the measuring error of the torque sensor generate from it. Therefore the torque arm of the torque standard machine is accurately controlled. In this paper, the self-tuning fuzzy controller was designed using a fuzzy theory, and the torque arm of the torque standard machine was accurately controlled. The control gain of the fuzzy controller, that is the membership function size of the error, the membership function size of the error change and the membership function size of the controller were determined from the self-tuning. The control results of the torque standard machine were the overshoot within 0.0076mm, the rise time within 16.70sec and the steady state error within 0.0076mm.

  • PDF

A Study on The Curvature Extrusion for Automotive Aluminum Suspension Arm (자동차 알루미늄 서스펜션 암 곡률압출공정에 관한 연구)

  • Lee, Sang-Kon;Kim, Byung-Min;Oh, Kae-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.71-77
    • /
    • 2009
  • In the automotive industry, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded components are used for the design of frame parts. This study investigates the curvature extrusion process to produce the aluminum curved suspension arm. In the curvature extrusion process, the bending process is simultaneously carried out with the extrusion process. Firstly, porthole extrusion was investigated by using FE analysis to produce aluminum suspension arm. And then the bending process condition was determined to produce the final suspension arm with the required curvature. In this research, the guide roll movement causes the bending of extruded product. The moving distance and velocity of guide roll were controlled to meet the required curvature of suspension arm. Finally, the curved suspension arm was manufactured by the curvature extrusion experiment under the proposed curvature extrusion condition.

An Obstacle-Avoidance Algorithm for a Redundant Robot Arm Using Fuzzy Control and Performance-Function Optimization (퍼지제어와 성능함수 최적화를 이용한 여유자유도 로봇 팔의 장애물 우회 알고리즘)

  • Lee, Byung-Ryong;Hwang, Jae-Suk;Park, Chan-Ho;Yang, Soon-Yong;Ahn, Kyung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.187-194
    • /
    • 2002
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During talc motion, if there exists no obstacle, the end-effector of the robot arm moves along the predefined path. But if these exists an obstacle and close to talc robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture far collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sites of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

Development of a Floating Point Co-Processor for ARM Processor (ARM 프로세서용 부동 소수점 보조 프로세서 개발)

  • 김태민;신명철;박인철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.232-235
    • /
    • 1999
  • In this paper, we present a coprocessor that can operate with ARM microprocessors. The coprocessor supports IEEE 754 standard single- and double-precision binary floating point arithmetic operations. The design objective is to achieve minimum-area, low-power and acceleration of processing power of ARM microprocessors. The instruction set is compatible with ARM7500FE. The coprocessor is written in verilog HDL and synthesized by the SYNOPSYS Design Compiler. The gate count is 38,115 and critical path delay is 9.52ns.

  • PDF

Inverse Dynamics for the Tip Position Control of the Transiational Motion Flexible Arm (병진 운동 탄성암의 선단 위치제어를 위한 역동역학)

  • 방두열;이성철;장남정이;저강광
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.155-159
    • /
    • 1991
  • This paper is a study on the Inverse dynamics of a one-1ink flexible robot arm which is control led by the transiational base motion. The system is composed of the flexible arm, the mobil stage, a DC servomotor, and a computer. The arm base is shifted so that the tip follows a desired path function. The tip Rotten is measured by the laser displacement sensor. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method to the resulted equations. Tip responses obtained both theoretically and experimentally are in good agreement with the desired trajectory, which shows that the scheme of inverse dynamics is effective for the open-loop endpoint positioning of the flexible am driven by the translation stage.

  • PDF