• Title/Summary/Keyword: Precise orbit determination

Search Result 76, Processing Time 0.025 seconds

Analysis of the KARISMA Orbit Determination Performance for the Radar Tracking Data (우주파편 충돌위험 종합관리 시스템의 레이더 관측 데이터 처리 결과 비교 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Many countries tried to design the collision risk management system to protect their own satellites from collision probability due to the space debris. In this situation, KARI(Korea Aerospace Research Institute) is developing the KARISMA(KARI Conjunction Risk Management System) to protect our operating satellites from these space debris. The quality of this system is depending on the accuracy of orbit determination for the space debris which has collision risk. Therefore, this system must treat many kinds of measurement data types to estimate the orbit of space debris. In this paper, to handle the radar observation data widely used for these space debris, the orbit determination system was applied with simulated radar tracking data for the KOMSAT-2 which has precise orbit determination data.

Analysis on Orbital Dynamics Operation Results of KOMPSAT-3 during Early Phase after Launch (다목적실용위성 3호 발사 후 초기 궤도 운영결과 분석)

  • Jung, Ok-Chul;Yim, Hyeonjeong;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.319-326
    • /
    • 2013
  • This paper describes the orbital dynamics operation results for the launch and early operations phase (LEOP) of KOMPSAT-3, which was successfully launched on May 18, 2012. At the initial phase, operational orbit determination was carried out using ground tracking data and GPS navigation solution. And, both in-plane and out-of plane maneuvers were executed in order to change the orbit from the injection orbit to the mission orbit. In addition, the accuracy of precise orbit determination was indirectly evaluated by overlapping method using GPS raw data of KOMPSAT-3 and international GNSS service data from worldwide-distributed ground stations. Currently, KOMPSAT-3 is operated in pre-defined mission orbit, and its various kinds of orbit data are generated and distributed to support the normal mission operations.

Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Park, Eunseo;Oh, Hyungjik Jay;Park, Sang-Young;Lim, Hyung-Chul;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.269-277
    • /
    • 2013
  • In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion $X_P$ and $Y_P$ are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

Analysis on the Orbit Accuracy of KOMPSAT-5 (다목적실용위성 5호 궤도정밀도 분석)

  • Jung, Okchul;Chung, Deawon;Kim, Eunkyou;Yoon, Jaecheol;Hwang, Yoola
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.108-114
    • /
    • 2014
  • This paper describes the orbit accuracy of KOMPSAT-5, which has been in normal operations since the launch on Aug. 22, 2013. The analysis on the various GPS related data and the different methodologies for orbit estimation are carried out and compared with each other. The accuracy of precise orbit is confirmed to be 12.8cm($1{\sigma}$) on average using data from the in-flight dual frequency GPS receiver, GPS precise ephemeris, and IGS stations. In addition, the orbit estimation using single frequency GPS receiver provides the orbit solution around 2m level. And, the accuracy of orbit processing is 5m using on-board navigation solution, which has about 10m accuracy.

On the Design of Geodetic SVLBI Satellite Orbit and Its Tracking Network

  • Erhu, Wei;Jingnan, Liu;N, Kulkarni M.;Sandor, Frey
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.505-510
    • /
    • 2006
  • SVLBI (Space Very Long Baseline Interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of SVLBI satellite. This paper studies several technologies which possibly will be able to determine the orbit of space VLBI satellite. And then, according to the sorts and characteristicsof satellite and the requirements for geodetic study and the geometry of GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of the space of different heights by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.

  • PDF

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

KOMPSAT-2 Direct Sensor Modeling and Geometric Accuracy Analysis (다목적실용위성2호 센서모델링 및 기하정확도 분석)

  • Seo, Doo-Chun;Kim, Moon-Gyu;Lee, Dong-Han;Song, Jeong-Heon;Park, Su-Young;Lim, Hyo-Suk;An, Gi-Won;Lee, Hyo-Seong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The horizontal geo-location accuracy of KOMPSAT-2, without GCPs (Ground Control Points) is 80 meters CE90 for monoscopic image of up to 26 degrees off-nadir angle, after processing including POD (Precise Orbit Determination), PAD(Precise Attitude Determination) and AOCS (Attitude and Orbit Control Subsystem) sensor calibration. In case of multiple stereo images, without GCPs, the vertical geometric accuracy is less than 22.4 meters LE 90 and the horizontal geometric accuracy is less than 25.4 meters. There are two types of sensor model for KOMPSAT-2, direct sensor model and Rational Function Model (RFM). In general, a sensor model relates object coordinates to image coordinates The major objective of this investigation is to check and verify the geometrical performance when initial KOMPSAT-2 images are employed and briefly introduce the sensor model of KOMPSAT-2.

  • PDF

Protoflight Model Development of Retroreflector Array for STSAT-2 (과학기술위성2호 레이저반사경의 준비행모델 개발)

  • Lee, Sang-Hyun;Kim, Kyung-Hee;Lee, Jun-Ho;Jin, Jong-Han;Kim, Hyung-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1135-1142
    • /
    • 2007
  • STSAT-2 has an on-board satellite retroreflector array for precise orbit determination. Satellite retroreflector array reflects photon emitted from laser and uses to determine precisely the distance from ground station to satellite by the round-trip travel time of photon. The retroreflector array of protoflight model has been developed and verified through environmental tests. This paper describes the protoflight model of retroreflector array and reports environmental test results. The environmental tests of protoflight model retroreflector array were performed successfully without damage of corner cube prism occurred in engineering model development.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.