• Title/Summary/Keyword: Precise measurement

Search Result 1,032, Processing Time 0.032 seconds

Automatic Guidance System for Tractor based upon Position-measurement Systems (위치(位置) 측정장치(測定裝置)를 이용한 트랙터의 자동(自動) 주행장치(走行裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 1990
  • An automatic guidance system based upon two position-measurement systems was designed to record where the tractor traveled and to guide the tractor along the predetermined path. An algorithm, using the kinematic behavior of tractor movement, was developed to determine the steering angle to reduce lateral position error. The algorithm was based upon constant travel speed, constant steering rate, and zero slip angles of the tractor wheels. The algorithm was evaluated through use of computer simulation and verified in field experiments. Results showed that the distance interval between position measurements was an important factor in guidance system performance. The position-measurement error of the guidance system must be less than 5 cm to be acceptably precise for field operations. An algorithm based upon a variable steering rate might improve the stability of the guidance system. More accurate measurement of tractor position and yaw angle, and faster error processing are required to improve the field performance of the guidance system.

  • PDF

Design of the Calibration System for Determining the Sensitivity of Ultrasonic Transducer (초음파 변환기의 감도 교정 시스템 구성)

  • 사공성대;조문재;최봉열
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.200-207
    • /
    • 1999
  • In this paper, a precise sensitivity measurement system of ultrasonic transducer in the frequency range from 1 MHz to 15 MHz, which can implement the reciprocity principle is constructed. All of the elements of this system such as the ultrasonic preamplifier, ultrasonic absorber, water tank, water degassing system, and four-axes translator and reflector are constructed. For the performance evaluation of the calibration system, a standard hydrophone precisely calibrated from PTB(Physikalisch Technische Bundesanstalt) in Germany are used. And the system parameters which affected the evaluation of the measurement accuracy and the reproducibility in various measuring conditions are considered. The measurement uncertainty of the calibration system is estimated within $\pm$ 2.0㏈.

  • PDF

A Study on Spacecraft Alignment Measurement with Theodolite (데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구)

  • 윤용식;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.64-70
    • /
    • 2003
  • A measurement of spacecraft alignment is an important process of spacecraft assembly, integration and test because it is necessary that a ground station controls the precise positions of on-orbit spacecraft by using the alignment data of attitude orbit control sensors(AOCS) on spacecraft. In addition, accuracy of spacecraft alignment requirement is about $0.1^{\circ}$~$0.7^{\circ}$. The spacecraft alignment is measured by autocollimation of theodolite. This paper describes the measurement principle and method of spacecraft alignment. The result shows that all of the AOCS on the spacecraft are aligned within the tolerance required through the alignment measurement.

A Study on Confocal Microscope for A Precise 3-Dimensional Surface Measurement (물체표면의 3차원 정밀형상측정을 위한 공초점 현미경에 관한 연구)

  • 송대호;안중근;강영준;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.233-236
    • /
    • 1997
  • In modem industry, the accuracy and the surface-finish requirements for machined parts have been becoming ever more stringent. Optical method in measurements is playing an important role in vibration measurement, crack and defect detection and surface topography with the advent of opto-mechatronics. In this study, the principle of the general confocal microscope is introduced for surface measurement, and the advanced confocal microscope that has better measuring speed than the traditional confocal microscope is developed. A study on improving the resolution of the advanced confocal microscope is followed. Finally, Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

A study on measuring and evaluating in stylus type 3-D surface roughness. (촉침식 3차원 표면거칠기 측정평가에 관한 연구)

  • Han, Eung-Kyo;Kim, Hee-Seouk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.60-68
    • /
    • 1986
  • Measurement of surface roughness has been done by two dimensional method until now. In recent, three dimensuional method is introduced for the precise measurement of surface roughness. But the study about stylus type three dimensional measurement method is a little. Therefore, in this study, arbitrary machined surface is selected and same part is measured by two dimensional and three dimensional method. The result is that the ratio of tow dimensional to three dimensional value is 0.9-1.1 in Ra. But two dimensional measurement method is underestimated because the ratio is 0.5-0.9 in Rz, Rmax. And it is suitable that the number of measuring line is 100 and y pitch is 5 um by three dimensional surface roughness measuring method.

  • PDF

Development of AC Resistance Measurement System (교류저항 측정시스템 개발)

  • Kim, Han-Jun;Yu, Kwang-Min;Kang, Jeon-Hong;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.683-684
    • /
    • 2008
  • The resistance is frequency dependent by the Seeback effect, loading effect, Eddy current loss, uniformly distributed inductance of the resistance element and uniformly distributed self-capacitance of the resistance element and capacitance between resistance element and it's box. A precise ac resistance measurement system has been developed for using as maintaining and dissemination of national ac resistance standards. The developed resistance measurement system can be used as a instrument of national ac resistance standards at frequency less than 10 kHz and it's measurement accuracy was 0.23(${\mu}{\Omega}/{\Omega}$)+4.2 ${\mu}{\Omega}$ at 1592 Hz and 20 V.

  • PDF

Wall Thickness Measurement of Respiratory Airway in CT Images: Signal Processing Aspects

  • Park, Sang-Joon;Kim, Jong-Hyo;Kim, Kwang-Gi;Lee, Sang-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.279-280
    • /
    • 2007
  • Airway wall thickness is an important bio-marker for evaluation of pulmonary diseases such as stenosis, bronchiectasis. Nevertheless, an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of airway wall thickness in CT images involves various sources of error and uncertainty. So we have developed an accurate airway wall measurement technique for small airways with three-dimensional (3-D) approach. To illustrate performance of these techniques, we used airway phantom that consisted of 4 acryl tubes with various inner and outer diameters. Results show that evaluation of interpolation and deconvolution methods of airways in 3-D CT images, and significant improvement over the full-width-half-maximum method for measurement of not only location of the luminal and outer edge of the airway wall but airway wall thickness.

  • PDF

Development of Effective Measurement System for Micro Burrs (효율적인 마이크로 버 측정 시스템 개발)

  • Ko Sung-Lim;To Hoang-Minh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.702-705
    • /
    • 2005
  • Burr is an undesirable projection as result of plastic deformation. Burr minimization and effective deburring process are required strongly to reduce the cost of the parts. In doing these efforts, the precise burr measurement must be provided for the efficient process. For this purpose the conoscopic holography sensors are selected before. However, it has been very difficult to measure micro burrs less than $10{\mu}m$ due to their tiny and sharp geometries as well as the effect of ambient vibration during scanning. A new micro burr measurement system using high precision. Conoprobe sensor and XY table can measure the micro burrs which is less than $10{\mu}m$. Experiments were carried out showing that micro burr around $10{\mu}m$ was successfully measured and analyzed.

  • PDF

Crank Angle Analysis

  • Gade, Svend;Hald, Jorgen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1040-1043
    • /
    • 2001
  • This paper describes the principle behind Crank Angle Analysis, as implemented by Bruel & Kjaer in the Non-Stationary Spatial Transformation of Sound Fields (NS-STSF) system. The NS-STSF system combines a Time Domain Holography measurement on for example an engine with two simultaneously recorded Tacho signals. The Tacho signals provide the crankshaft angle and the RPM at the instant of each instantaneous output (snap-shot) from Time Domain Holography. As a result, the system allows precise analysis of the temporal and spatial relation between the acoustical emission (or the vibration pattern) and the mechanical events during an engine cycle. Some results from a measurement on a DaimlerChrysler engine are presented.

  • PDF

Quantitative Analysis of Trace pp'-DDE in Corn Oil by Isotope Dilution Mass Spectrometry : Uncertainty Evaluations

  • 김병주;김달호;최종오;소헌영
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.910-916
    • /
    • 1999
  • A current interest in chemistry concerns traceability of analytical measurements to the International System of Units (SI) and the proper estimation of their uncertainties in accordance with the internationally agreed guide provided by the International Organization for Standardization (ISO). Isotope dilution mass spectrometry (IDMS) is regarded as a primary method, which make the measurement results traceable to SI units without significant empirical correction factors. Our laboratory, as the national standards institute of Korea, participated in an intercomparison of environmental analysis, pp'-DDE in corn oil, which was organized by the CCQM under supervision of the CIPM to test feasibility of IDMS as a primary method for the trace analysis of organic compounds. In this report, we provide basic equations used for the calculation of the concentration of the analyte in a sample and a precise description of the processes for the evaluation of the uncertainties of the measurement results. Also, we report the experimental conditions adopted to improve the accuracy of the IDMS measurement. The principles contained in ??Guide to the Expression of Uncertainty in Measurement'' provided by ISO are followed for the uncertainty evaluation.