• 제목/요약/키워드: Precise ephemerides

검색결과 10건 처리시간 0.024초

신속정밀제도력과 초신속정밀궤도력을 이용한 GPS 위성좌표 계산 (Calculates of GPS Satellite Coordinates Using Rapid and Ultra-Rapid Precise Ephemerides)

  • 박정현;이용욱;이은수
    • 한국측량학회지
    • /
    • 제22권4호
    • /
    • pp.383-390
    • /
    • 2004
  • IGS는 13일 이후에 제공되는 매우 정확한 최종정밀궤도력을 제공하고 있으며, 보다 신속한 활용을 위해 신속정밀궤도력을 제공하고 있다. 그리고 실시간 활용을 위해 초신속정밀궤도력을 제공하고 있다. 본 연구에서는 최종정밀궤도력을 기준으로 신속정밀궤도력과 초신속정밀궤도력의 정확도를 분석하고, 위성의 위치결정에 필요한 Lagrange 보간법의 차수를 결정하고자 한다. 연구결과, 신속정밀궤도력의 x,y,z좌표의 평균제곱근오차는 $\pm$0.016m 정도였으며, 관측된 초신속정밀궤도력은 약 $\pm$0.024m의 오차를 나타내었다. 24시간동안의 예측 초신속정밀궤도력은 $\pm$0.07m, 6시간동안 예측된 초신속정밀궤도력은 $\pm$0.04m 정도의 오차를 나타내어 방송궤도력보다 매우 높은 정확도를 갖고 있음을 알 수 있었다. 또한, Lagrange 방법으로 위성의 위치를 계산하는 경우, 9차 다항식을 이용하는 것이 효율적임을 확인하였다.

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

고대 역법에 나오는 일식기(日食旣)의 의미 (MEANING OF 'EXHAUSTED ECLIPSES' IN ANCIENT EPHEMERIDES)

  • 안상현
    • 천문학논총
    • /
    • 제23권2호
    • /
    • pp.65-71
    • /
    • 2008
  • It has been considered that 'exhausted eclipses' (日食旣) were total eclipses. However, modern precise calculations show that a significant fraction of such records are not realized to be total. Thus we doubt that the two concepts are equivalent. Here we investigate the meaning of 'exhausted eclipses' in the east-Asian history. We first find that eclipses of magnitude greater than 0.8 were regarded as 'exhausted eclipses' by a Korean astronomer of the 18th-century Choson dynasty. His notion was based upon the definition of 'exhausted eclipses' in the ephemerides of pre-modern Chinese dynasties. According to those ephemerides, the 'exhausted eclipses', whose magnitude is greater than 0.8, have the first contact at the western part of the solar disk and the fourth contact at the eastern part of the solar disk. A simple geometrical calculation shows that such cases really occur when the magnitude of eclipse is greater than 0.7. We pointed out that such an ancient definition might not be impractical for ancient astronomers, because the uncertainty of eclipse magnitude estimated by ancient Chinese ephemerides was 10% and the human sight has a spatial resolution of 1.2 arcmin, which is approximately one twentieth of the Sun's angular diameter.

Correction of Time and Coordinate Systems for Interoperability of Multi-GNSS

  • Kim, Lawoo;Lee, Yu Dam;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.279-289
    • /
    • 2021
  • GNSS receivers capable of tracking multiple Global Navigation Systems (GNSSs) simultaneously are widely used. In order to estimate accurate user position and velocity, it is necessary to consider the key elements that contribute to the interoperability of the different GNSSs. Typical examples are the time system and the coordinate system. Each GNSS is operated based on its own reference time system depending on when the system was developed and whether the leap seconds are applied. In addition, each GNSS is designed based on its own coordinate system based on earth model constant values. This paper addresses the interoperability issues from the viewpoint of Single Point Positioning (SPP) users utilizing multiple GNSS signals from GPS, GLONASS, BeiDou, and Galileo. Since the broadcast ephemerides of each GNSS are based on their own time and coordinate systems, the time and the coordinate systems should be unified for any user algorithm. For this purpose, this paper proposes a method of converting each GNSS coordinate system into the reference coordinate system through Helmert transformation. The error of the broadcast ephemerides was calculated with the precise ephemerides provided by the International GNSS Service (IGS). The effectiveness of the proposed multi-GNSS correction and transformation method is verified using the Multi-GNSS Experiment (MGEX) station data.

GPS기반 준실시간 위치추적을 위한 IGS 예측궤도력 이상 검출 (Anomaly Detection of IGS Predicted Orbits for Near-Real-Time Positioning Using GPS)

  • 하지현;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제15권6호
    • /
    • pp.953-961
    • /
    • 2011
  • IGS(Internation GNSS Service) 초신속궤도력에 포함된 예측궤도력은 실시간 혹은 준실시간 정밀 항법에 적합한 궤도력이다. 이 논문에서는 예측궤도력에서 발생할 수 있는 궤도 이상 발생 현황을 점검하고, NANU(Current Notice Advisories to NAVSTAR Users)와 IGS 방송궤도력(BRDC, Broadcast Ephemerides)를 이용하여 예측궤도력의 이상 검출 성능을 분석하였다. 그 결과 예측궤도력은 2010년 1년간 93회의 궤도 이상이 나타났으며, NANU를 이용할 경우 88%, NANU와 BRDC를 함께 사용할 경우 95%의 이상 검출이 가능함을 확인할 수 있었다.

SEARCHING FOR TRANSIT TIMING VARIATIONS AND FITTING A NEW EPHEMERIS TO TRANSITS OF TRES-1 B

  • Yeung, Paige;Perian, Quinn;Robertson, Peyton;Fitzgerald, Michael;Fowler, Martin;Sienkiewicz, Frank;Tock, Kalee
    • 천문학회지
    • /
    • 제55권4호
    • /
    • pp.111-121
    • /
    • 2022
  • Based on the light an exoplanet blocks from its host star as it passes in front of it during a transit, the mid-transit time can be determined. Periodic variations in mid-transit times can indicate another planet's gravitational influence. We investigate 83 transits of TrES-1 b as observed from 6-inch telescopes in the MicroObservatory robotic telescope network. The EXOTIC data reduction pipeline is used to process these transits, fit transit models to light curves, and calculate transit midpoints. This paper details the methodology for analyzing transit timing variations (TTVs) and using transit measurements to maintain ephemerides. The application of Lomb-Scargle period analysis for studying the plausibility of TTVs is explained. The analysis of the resultant TTVs from 46 transits from MicroObservatory and 47 transits from archival data in the Exoplanet Transit Database indicated the possible existence of other planets affecting the orbit of TrES-1 and improved the precision of the ephemeris by one order of magnitude. We now estimate the ephemeris to be (2 455 489.66026 BJDTDB ± 0.00044 d) + (3.0300689 ± 0.0000007) d × epoch. This analysis also demonstrates the role of small telescopes in making precise midtransit time measurements, which can be used to help maintain ephemerides and perform TTV analysis. The maintenance of ephemerides allows for an increased ability to optimize telescope time on large ground-based telescopes and space telescope missions.

Geometric Corrections of Inaccessible Area Imagery by Employing a Correlative Method

  • Lee, Hong-Shik;Park, Jun-Ku;Lim, Sam-Sung
    • 대한공간정보학회지
    • /
    • 제10권5호
    • /
    • pp.67-74
    • /
    • 2002
  • The geometriccorrection of a satellite imagery is performed by making a systematic correction with satellite ephemerides and attitude angles followed by employing the Ground Control Points (GCSs) or Digital Elevation Models (DEMs). In a remote area or an inaccessible area, however, GCPs are unavailable to be surveyed and thus they can be obtained only by reading maps, which are not accurate in reality. In this study, we performed the systematic correction process to the inaccessible area and the precise geometric correction process to the adjacent accessible area by using GCPs. Then we analyzed the correlation between the two geo-referenced Korea Multiurpose Satellite (KOMPSAT-1 EOC) images. A new geometrical correction for the inaccessible area imagery is achieved by applying the correlation to the inaccessibleimagery. By employing this new method, the accuracy of the inaccessible area imagery is significantly improved absolutely and relatively.

  • PDF

ITRF에 준거한 정밀 GPS 측위에 관한 연구 (High Precision GPS Positioning Referred to ITRF)

  • 윤홍식;황진상;최윤수
    • 한국측량학회지
    • /
    • 제18권3호
    • /
    • pp.251-261
    • /
    • 2000
  • 본 논문은 정밀한 기준좌표계인 ITRF96에 준거하여 GPS 측위를 수행하고 이에 따른 측위 정밀도를 분석하였으며, 여러 가지 방법에 따른 중, 장기선장의 데이터처리 결과를 제시하였다. 본 논문에서는 Jet Propulsion Laboratory에서 제공받은 정밀궤도력을 사용하여 GPS의 관측오차를 최소화하였으며, GIPSY-OASIS II 소프트웨어를 사용하여 관측기선의 비교 분석 결과를 제시하였다. 또한, 데이터 처리방법의 정확도를 검토하였다.

  • PDF

GPS 절대측위 정확도 분석 (Accuracy Analysis of GPS Absolute Positioning)

  • 강준묵;김욱남;박정현;이은수
    • 한국측량학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 연구는 SA가동 중단 후 GPS절대 측위 정확도의 향상 정도를 파악하는데 있다. 이를 위해 SA가동 중단 전후의 GPS C/A코드 의사 거리를 이용하여 위성 시계 오차량과 관측점 좌표를 산출하였으며, 이를 JPL 정밀궤도력에 포함되어 있는 위성 시계 오차량 및 관측점의 기지성과와 비교하였다. 비교 결과, GPS 위성 시계 오차 보정량은 SA가동시 약 $\pm$ 40m폭으로 변동을 보인 반면, SA중단 후 $\pm$2m이내로 급격히 감소되었음을 알 수 있었으며, 3차원 좌표성과에 대한 95% 확률오차는 SA 가동시 약 $\pm$65m 였으나, 가동 중단후 X. Y는 약 $\pm$10m, Z는 약 $\pm$15m로 GPS 절대 측위 정확도가 상당히 향상되었음을 알 수 있었다.

  • PDF

Under-Developed and Under-Utilized Eclipsing Binary Model Capabilities

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.115-121
    • /
    • 2012
  • Existing but largely unused binary star model capabilities are examined. An easily implemented scheme is parameterization of starspot growth and decay that can stimulate work on outer convection zones and their dynamos. Improved precision in spot computation now enhances analysis of very precise data. An existing computational model for blended spectral line profiles is accurate for binary system effects but needs to include damping, thermal Doppler, and other intrinsic broadening effects. Binary star ephemerides had been found exclusively from eclipse timings until recently, but now come also from whole light and radial velocity curves. A logical further development will be to expand these whole curve solutions to include eclipse timings. An attenuation model for circumstellar clouds, with several absorption and scattering mechanisms, has been applied only once, perhaps because the model clouds have fixed locations. However the clouds could be made to move dynamically and be combined into moving streams and disks. An area of potential interest is polarization curve analysis, where incentive for modeling could follow from publication of observed polarization curves. Other recent advances include direct single step solutions for temperatures of both stars of an eclipsing binary and third body kinematics from combined light and velocity curves.