• Title/Summary/Keyword: Precise GPS Data Processing

Search Result 67, Processing Time 0.026 seconds

An Efficient Local Map Building Scheme based on Data Fusion via V2V Communications

  • Yoo, Seung-Ho;Choi, Yoon-Ho;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.45-56
    • /
    • 2013
  • The precise identification of vehicle positions, known as the vehicle localization problem, is an important requirement for building intelligent vehicle ad-hoc networks (VANETs). To solve this problem, two categories of solutions are proposed: stand-alone and data fusion approaches. Compared to stand-alone approaches, which use single information including the global positioning system (GPS) and sensor-based navigation systems with differential corrections, data fusion approaches analyze the position information of several vehicles from GPS and sensor-based navigation systems, etc. Therefore, data fusion approaches show high accuracy. With the position information on a set of vehicles in the preprocessing stage, data fusion approaches is used to estimate the precise vehicular location in the local map building stage. This paper proposes an efficient local map building scheme, which increases the accuracy of the estimated vehicle positions via V2V communications. Even under the low ratio of vehicles with communication modules on the road, the proposed local map building scheme showed high accuracy when estimating the vehicle positions. From the experimental results based on the parameters of the practical vehicular environments, the accuracy of the proposed localization system approached the single lane-level.

  • PDF

Impact of Tropospheric Modeling Schemes into Accuracy of Estimated Ellipsoidal Heights by GPS Baseline Processing: Experimental Analysis and Results (GPS 기선해석에 의한 타원체고 추정에서 대류권 오차 보정기법이 정확도에 미치는 영향에 관한 실험적 분석)

  • Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.245-254
    • /
    • 2018
  • Impact of tropospheric correction techniques on accuracy of the GPS (Global Positioning System) derived ellipsoidal heights has been experimentally assessed in this paper. To this end, 247 baselines were constructed from a total of 88 CORS (Continuously Operating Reference Stations) in Korea. The GPS measurements for seven days, acquired from the so-called integrated GNSS (Global Navigation Satellite Systems) data center via internet connection, have been processed by two baseline processing software packages with an application of the empirical models, such as Hopfield, modified Hopfield and Saastamoinen, and the estimation techniques based on the DD (Double-Differenced) measurements and the PPP (Precise Point Positioning) technique; hence a total number of the baseline processed and tested was 8,645. Accuracy and precision of the estimated heights from the various correction schemes were analyzed about baseline lengths and height differences of the testing baselines. Details of these results are summarized with a view to hopefully providing an overall guideline of a suitable selection of the modeling scheme with respect to processing conditions, such as the baseline length and the height differences.

Implementation of Precise Drone Positioning System using Differential Global Positioning System (차등 위성항법 보정을 이용한 정밀 드론 위치추적 시스템 구현)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • This paper proposes a precise drone-positioning technique using a differential global positioning system (DGPS). The proposed system consists of a reference station for error correction data production, and a mobile station (a drone), which is the target for real-time positioning. The precise coordinates of the reference station were acquired by post-processing of received satellite data together with the reference station location data provided by government infrastructure. For the system's implementation, low-cost commercial GPS receivers were used. Furthermore, a Zigbee transmitter/receiver pair was used to wirelessly send control signals and error correction data, making the whole system affordable for personal use. To validate the system, a drone-tracking experiment was conducted. The results show that the average real-time position error is less than 0.8 m.

Precise Survey of Dokaebi Road Using CDGPS (CDGPS를 이용한 도깨비 도로의 정밀 측위)

  • Kee, Chang-Don;Kim, Jeong-Han
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • Using GPS carrier phase whose cycle ambiguities are resolved, it is possible to perform precise survey requiring centimeter-level positioning accuracy. Because of an optical illusion, we cannot recognize the exact slope of Dokaebi Road. In this paper, we performed kinematic survey experiments in order to calculate the exact slope of Dokaebi Road with high positioning accuracy of CDGPS. By post-processing experimental data using CDGPS, it was possible to generate the exact vertical trajectory of Dokaebi Road with centimeter-level accuracy.

  • PDF

Impact of Tropospheric Delays on the GPS Positioning with Double-difference Observables (대류권 지연이 이중차분법을 이용한 GPS 측위에 미치는 영향)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.421-427
    • /
    • 2013
  • In general, it can be assumed that the tropospheric effect are removed through double-differencing technique in short-baseline GPS data processing. This means that the high-accuracy positioning can be obtained because various error sources can be eliminated and the number of unknown can be decreased in the adjustment computation procedure. As a consequence, short-baseline data processing is widely used in the fields such as deformation monitoring which require precise positioning. However, short-baseline data processing is limited to achieve high positioning accuracy when the height difference between the reference and the rover station is significant. In this study, the effects of tropospheric delays on the determination of short-baseline is analyzed, which depends on the orientation of baseline. The GPS measurements which include tropospheric effect and measurement noises are generated by simulation, and then rover coordinates are computed by short-baseline data processing technique. The residuals of rover coordinates are analyzed to interpret the tropospheric effect on the positioning. The results show that the magnitudes of the biases in the coordinate residuals increase as the baseline length gets longer. The increasing rate is computed as 0.07cm per meter in baseline length. Therefore, the tropospheric effects should be carefully considered in short-baseline data processing when the significant height difference between the reference and rover is observed.

A Study on the GPS Auto-surveying system and work procedure to perform a precise three dimensional topographic survey (GPS를 응용한 3D 지형/현황도 작성용 측량자동화 시스템 구성과 그 작업절차에 관한 연구)

  • Lee, Kee-Boo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.169-177
    • /
    • 1997
  • The purpose of this paper is to study the ideal Auto-surveying system and to establish the standard of work procedure involved with completing a precise three-dimensional topographic survey with RTK GPS equipment, a pen based personal computer, and real time CADD software. The fieldwork was done at a golf course which could be regarded as a heavy civil project site such as the reclamation and the site preparation work in December of 1997. The proposed Auto-surveying system and the work procedure in this paper is based on the data processing and the resultant topographic map of the golf course.

  • PDF

Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users' vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS (실시간 응용을 위한 GPS 정밀 궤도력 결정)

  • 임형철;박필호;박종욱;조정호;안용원
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • The accuracy of GPS applications is heavily dependent on the satellite ephemeris and earth orientation parameter. Specially applications like as the real time monitoring of troposphere and ionosphere require real time or predicted ephemeris arid earth orientation parameter with very high quality. IGS is producing IGS ultra rapid product called IGU for real time applications which includes the information of ephemeris and earth orientation. IGU is being made available twice everyday at 3:00 and 15:00 UTC arid covers 48 hours. The first 24 hours of it are based on actual GPS observations and the second 24 hours extrapolated. We will construct the processing strategy for yielding ultra rapid product and demonstrate the propriety through producing it using 48 hours data of 32 stations.

  • PDF

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

The Improvement of the Positioning Accuracy of a Single Frequency Receiver by Appling the Error Correction Information (오차보정정보 적용에 의한 단일주파수 수신기의 측위정확도 향상)

  • Choi, Byung-Kyu;Lee, Sang-Jeong;Park, Jong-Uk;Jo, Jung-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.399-405
    • /
    • 2007
  • Providing a precise positioning information is the primary characteristics of GPS. The relative positioning technique which utilizes the common measurements between a GPS reference station and a user is generally used to do the generation of a precise positioning. But if user is far from a GPS reference site, the properties of medium penetrated by GPS signals will be different from each other, It is difficult to eliminate the error sources such as the ionosphere and the troposphere effectively by the double differencing method. In this study the additional error correction values with the ionosphere and the troposphere to the data processing have applied. As a result, the positioning accuracy of fourteen out of seventeen testing sites were improved by appling the error correction values. We also analysed the improved rate of the positioning accuracy by the baseline.