• Title/Summary/Keyword: Precise Control

Search Result 1,915, Processing Time 0.036 seconds

Precision control of a mobile/task robot using visual information (비젼 정보를 이용한 이동/작업용 로봇의 정밀제어)

  • 한만용;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.71-79
    • /
    • 1997
  • This paper introduces a methodology of the precise control of a mobile/task robot using visual information captured bythe camera attached at the hand of the task robot. The major problem residing in the precise control of mobile/task robot is providing an accurate and stable base for the task robot through the precise control of mobile robot. On account of uncertainties on the surface, the precise control of mobile robot is not feasible without using external position sensor. In this paper, the methodology for the precise control of mobile robot is proposed, which recognizes the position of mobile robot using the camera attached at the hand of the task robot. While the task robot is approaching to an assembly part, the position of mobile robot is measured using the line correspondence between the image capturesd by the camera and the real assembly part, and using the kinematic transformation from the hand of the task robot to the mobile robot. To verify the solidness of this method, experimental data for the measurement of camera position/orientation and for the precise control of mobile robot using measurement are shown.

  • PDF

FPGA Based Micro Step Motor Driver

  • Uk, Cho-Jung;Wook, Jeon-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.3-111
    • /
    • 2001
  • Automative system and robot are operated by motor. Recently, automative system and robot need correct operation and control for precise task. Therefore they need precise motor control technology. In present, controller needs precise motor control technology in automative system and robot. Usual step motor driver that has 200 steps per revolution is not proper. So we need micro step motor driver that is more precise then usual step motor driver. In this paper, micro step motor driver is used for precise control of step motor. The goal is precise operation and location control. This micro step motor driver is A3972SB that is made in Alloegro Company. It has serial port that receives two 6-bits linear DAC value. Almost all systems generate DAC value with micro processer and ...

  • PDF

Precise temperature control by modern control method on the refrigerator and air conditioner (현대제어 이론을 이용한 냉동공조기의 정밀 온도제어)

  • 한정만;유휘룡;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1213-1216
    • /
    • 1996
  • This paper describes a precise temperature control method for refrigerating and air conditioning systems. The control technique is based on the optimal servo control design method and the control algorithm is implemented on a personal computer. To control the precise temperature, two actuators such as an inverter for the compressor speed control and a stepping motor for regulating the expansion valve are used. The superheat and evaporator temperatures are chosen as the system output. So a multivariable system which has two inputs and two outputs to be controlled. The complicative model is identified by using an ARX(Auto Regressive eXogenous) model and the controller is designed by using the Matlab software.

  • PDF

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

A study on Precise Grasping Control of End-Effector for Parts Assembling and Handling (부품조립 및 핸들링을 위한 말단효과장치의 정밀 그리핑 제어에 관한 연구)

  • Ha, Un-Tae;Sung, Ki-Won;Kang, Eun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • In this paper, we propose a new precise control technology of robotic gripper for assembling and handling of part. When a robot manipulator interacts mechanically with its environment to perform tasks such as assembly or edge-finishing, the end-effector is thereby constrained by the environment. Therefore grasping force control is very important, since it increases safety due to monitoring of contact force. A comparison of various force control architecture is reported. Different force control methods can often be configured to achieve similar results for a given task, and the choice of control algorithm depends strongly on the application or on the characteristics of a particular robot. In the research, the adjustable gripping force can be controlled and improved the accuracy using the artificial intelligence techniques.

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Effective Strategy for Precise Orbital and Geodetic Parameter Estimation Using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Oh, Jay;Park, Sang-Young;Park, Chandeok;Park, Eun-Seo;Lim, Hyung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.159.2-159.2
    • /
    • 2012
  • In this study, we propose an effective strategy for precise orbital and geodetic parameter estimation using SLR (Satellite Laser Ranging) observations for ILRS AAC (Associate Analysis Center). The NASA/GSFC GEODYN II software and SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 are utilized for precise orbital and geodetic parameter estimation. Weekly-based precise orbit determination strategy is applied to process SLR observations, and Precise Orbit Ephemeris (POE), TRF (Terrestrial Reference Frame), and EOPs (Earth Orientation Parameters) are obtained as products of ILRS AAC. For improved estimation results, selection strategies of dynamic and measurement models are experimently figured out and configurations of various estimation parameters are also carefully chosen. The results of orbit accuracy assessment of POE and precision analysis of TRF/EOPs for each case are compared with those of existing results. Finally, we find an appropriate strategy for precise orbital and geodetic parameter estimation using SLR observations for ILRS AAC.

  • PDF

Disturbance Observer- Based Sliding Mode Control for the Precise Mechanical System with the Bristle Friction Model

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.5-14
    • /
    • 2003
  • Tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate fer effects of friction. The conventional SMC method often shows poor tracking performance in high-precision position tracking application since it cannot completely compensate for the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the SMC method combined with the disturbance observer having tunable transient performance. Then this control scheme has the high precise tracking peformance as well as a good transient response when it is compared with the conventional SMC method and the similar types of observers, The experiment on the XY ball-screw drive system with the nonlinear dynamic friction confirms the feasibility of the proposed control scheme.

Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control (가속도제어에 의한 4축 시스템의 정밀 위치동기제어)

  • Jeong, Seok-Kwon;Choi, Bong-Seok;You, Sam-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.

Design of a Model Reference Adaptive Control System with Dead Zone

  • Yokota, Yukihiro;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1239-1244
    • /
    • 2004
  • Precise positioning is an important problem facing motion control systems which usually use electric motor. A motor possesses a nonlinear property which degrades the positioning accuracy. Therefore, a compensator which linearizes the relationship between the angular velocity and input signal of the motor is required to enable precise positioning. In this paper, the design of a Model Reference Adaptive Control System (MRACS) for realizing the precise positioning for a system using a motor including the nonlinear property is described. The designed MRACS is applied to the attitude control problem on a satellite using a DC servomotor to drive its reaction wheel. Experimental results demonstrate the validity of a proposed control method for a positioning control system with an electric motor.

  • PDF