• Title/Summary/Keyword: Precipitation chemistry

Search Result 415, Processing Time 0.03 seconds

Effect of Water Wash and Dry Temperature in Homogeneous Precipitation Method on the Manufacture of Mn-added Barium Hexaaluminates (균일용액침전법에서 수세여부와 건조온도가 망간이 첨가된 바륨헥사알루미네이트의 제조에 미치는 영향)

  • Park, Ji Yun;Kim, Seo Young;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.435-442
    • /
    • 2021
  • Mn-added Barium hexaaluminates were manufactured by homogeneous precipitation method using Urea. The effects of water wash and dry temperature were analyzed by thermal weight analysis, X-ray diffraction analysis, and scanning electron microscopy. Catalysts that went through the filtration step only produced pure hexaaluminate images compared to those that went through the water wash step. During the drying process, it seems that the remaining urea helps dehydration of the precursor and affects the phase shift of gibbsite to boehmite, which is easy to convert to pure hexaaluminate. The catalyst WO200 gave the best performance in the methane combustion reaction, and NOx was not emitted in the reaction for all catalysts. Hexaaluminates were found to affect reducing the highest CO emissions.

Preparation and Characterization of Nanocrystalline Spinel Ferrites by Chemical Co-precipitation (화학적 공침법을 이용한 침상형 페라이트 합성)

  • Shen, Jiao-Wen;Lim, Yun-Hui;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • In this work, nano-sized M-ferrites (M=Co, Ni, Cu, Zn) for the decomposition of carbon dioxide were synthesized by the chemical co-precipitation. From the thermogravimetric analysis, it was clear that the maximum weight loss of each sample took place below $350^{\circ}C$. High temperature calcination resulted in more systematic crystallines, smaller specific surface area and larger particle size. An analysis by FTIR in the range of $375{\sim}406cm^{-1}$ revealed the presence of chelates at the octahedral site, which implies the formation of spinel structure in the ferrites. The current work showed that a $500^{\circ}C$ is the optimum heat treatment temperature of metal ferrites for $CO_2$ decomposition reaction.

Spatial distribution and temporal variation of hydrogeochemistry in coastal lagoons and groundwater on the eastern area of korea

  • Chanyoung Jeong;Soo Min Song;Woo-Hyun Jeon;Hee Sun Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.247-247
    • /
    • 2023
  • Coastal lagoons play a crucial role in water exchange, water quality, and biodiversity. It is essential to monitor and understand the dynamics of hydrogeochemistry in lagoon water and its groundwater to preserve and sustainably manage the groundwater-dependent ecosystems like coastal lagoons. This study investigated the spatial and temporal hydrogeochemical characteristics of coastal lagoon (Songjiho) and groundwater on the east coast of Korea. The concentrations of major ions, water isotopes, and nutrients (nitrogen and dissolved organic carbon) in lagoon water and groundwater were periodically monitored for one year. The study revealed that major ions and total dissolved solids (TDS) concentration were higher at deeper depths of aquifers and closer to the coastal area. The hydrogeochemical characteristics of coastal lagoon and groundwater chemistry were classified into two types, Ca-Mg-HCO3 and Na-Cl, based on their spatial location from inland to coastal area. Moreover, the hydrogeochemical characteristics of coastal lagoons and groundwater varied significantly depending on the season. During the wet season, the increased precipitation and evaporation lead to changes in water chemistry. As a result, the total organic carbon (TOC) of coastal lagoons increases during this season, likely due to increased runoff by rainfall whereas the variation of chemical compositions in the lagoon and groundwater were not significant because there is reduced precipitation, resulting in stable water levels and during the dry season. The study emphasizes the impact of spatial distribution and seasonal changes in precipitation, evaporation, and river discharge on the hydrogeochemical characteristics of the coastal aquifer and lagoon system. Understanding these impacts is crucial for managing and protecting coastal lagoons and groundwater resources.

  • PDF

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia (대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성)

  • Hyunggyu Song;Daeok Youn;Johan Lee;Beomcheol Shin
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.19-36
    • /
    • 2024
  • The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.

Effects of Iron on Arsenic Speciation and Redox Chemistry in Acid Mine Water

  • Bednar A.J.;Garbarino J.R.;Ranville J.F.;Wildeman T.R.
    • Proceedings of the KSEEG Conference
    • /
    • 2004.12a
    • /
    • pp.9-28
    • /
    • 2004
  • Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not 짐ways hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides depletes iron from some systems, and this also affects arsenite and arsenate concentrations differently through sorption processes.

  • PDF

Preparation and Properties of Spherical BaMgAl10O17:Eu Phosphor by Multi-step Precipitation Method (다단 침전법에 의한 구형 BaMgAl10O17:Eu 형광체의 제조 및 특성)

  • Park, Jumg-Min;Jung, Ha-Kyun;Park, Hee-Dong;Park, Yoon-Chang
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.840-844
    • /
    • 2002
  • A spherical $BaMgAl_{10}$ $O_{17}$ :Eu phosphor has been synthesized by a multi-step precipitation route. In order to successfully synthesize the phosphor with spherical shape, the hydrated-alumina particles should be controlled for spherical shape. In this process, the hydroxypropyl cellulose (HPC) was used as a dispersing reagent. This reagent plays an important role in that the particles were controlled to have the uniform size of sub-micron. The final product prepared by the multi-step precipitation method maintained spherical shape with uniform size of 0.4$\mu\textrm{m}$. It can be seen in X-ray diffraction patterns, formation of the single phase of $BaMgAl_{10}$ $O_{17}$ :Eu phosphor prepared by the multi-step precipitation method at $1350^{\circ}C$. Also, the emission spectra of spherical $BaMgAl_{O}$ $10_{17}$ :Eu phosphor in the present case was compared with those of commercially-available blue phosphor under VUV (Vacuum Ultra Violet) excitation. The luminescence process of the $BaMgAl_{10}$ $O_{17}$ :Eu phosphor is characterized by the $4f^{6}$$5d^1$longrightarrow4f$^{7}$ transition (blue) of the $Eu^{2+}$ ion acting as an activating center and the maximum luminescence intensity was obtained by reduction treatment at 145$0^{\circ}C$.

Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

  • Lee, Myung-Jin;Kim, Ji-Ho;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1275-1279
    • /
    • 2010
  • We have carried out the surface modification of photocatalytic $TiO_2$ with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state $^{29}Si$ MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water.

Degraded Paddy Soils. I. Theoretical Analysis on the Sultide Formation and the Effect of Iron Hydroxide Upon Removal of Sulfide from Solution

  • Cho, Chai-Moo
    • Applied Biological Chemistry
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 1961
  • The formation of sulfide from sulfate has been discussed from the thermodynamic principles. No mechanism of the reaction has been presented. From the stoichiometric and Nernst equations for the conversion of sulfate into sulfide, it was concluded that the formation of sulfide from sulfate can take place more readily if pH of a medium is low. The difficulty of this conversion increases with increasing pH. As pH of a medium increases, the degree of dissociation of H₂S into S= increases and this, in turn, renders the chance of precipitation of sulfide as FeS easier. Higher the pH of a soil or medium, greater is the S= concentration. The concentration of ferrous ion required to remove dissolved sulfide in a medium by forming insoluble FeS decreases with increasing pH. From the theory it was pointed out that an application of lime and iron rich foreign substances to a soil may be effective in causing the removal of dissolved sulfide from solution.

  • PDF

Synthesis and Characteristics of Magnesium Hydroxide Group Flame Retardant for Polymer Addtives (고분자 첨가제인 난연제로서의 수산화마그네슘계 물질의 합성과 특성)

  • Lee, Dong-Kyu;Kang, Kuk-Hyoun;Lee, Jin-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Different types magnesium hydroxide groups have been obtained using the hydrothermal precipitation technique from magnesium sulfate and calcium carbonate solution. The Mg atom coordinated around O atom of ${SO_4}^{2-}$ in another layer to form a multi-layer structure crystal. The influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide groups precipitated in aqueous were investigated such as different of additive and pH. Magnesium hydroxide groups were decomposed gradually and converted finally to MgO particles after heated in air temperature up to $1050^{\circ}C$. The particle size and it's distribution morphology, crystal phase and thermal behavior of the samples were characterized through XRD, SEM, EDS, and TG/DTA.

Studies on the Consitiuents of the Higher Fungi of Korea(XVIII) - Components of Russula pseudodelica and Microporus affinis - (한국산(韓國産) 고등(高等) 균류(菌類)의 성분(成分) 연구(硏究)(XVIII) - Russula pseudodelica와 Microporus affinis의 성분(成分) -)

  • Min, Hong-Ki;Kim, Byung-Kak;Choi, Eung-Chil
    • The Korean Journal of Mycology
    • /
    • v.8 no.1
    • /
    • pp.13-19
    • /
    • 1980
  • To investigate constituents of Russula pseudodelica Lange and Microporus affinis(Blume et Nees) Kuntze, quantitative analyses of free and total amino acids were carried out with G. L.C. and an amino acid autoanalyzer. Polysaccharides of the two mushrooms were extracted with hot water and the filtrate was concentrated. The addition of three volumes of ethanol to the concentrate formed precipitation of crude polysaccharides which were analyzed by G.L.C. and H.P.L.C. Sixteen amino acids and four monosaccharides were identified in the protein-bound poly­saccharides of the two mushrooms. The polysaccharides of M. affinis showed antineoplastic activity against sarcoma 180 implanted in mice.

  • PDF