• Title/Summary/Keyword: Precipitable Water

Search Result 108, Processing Time 0.03 seconds

Correlation Analysis between GPS Precipitable Water Vapor and Heavy Snowfall on Gangwon Province in Early 2011 (2011년 강원 폭설과 GPS 가강수량의 상관성 분석)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • In this paper, the GPS precipitable water vapor was retrieved by estimating of GPS signal delay in the troposphere during the progress of heavy snowfall on the Gangwon Province, 2011. For this period, the time series analysis between GPS precipitable water vapor and fresh snow depth was accomplished. The time series and the comparison with the GPS precipitable water vapor and the fresh snow depth indicates that the temporal change of two variations is closely related to the progress of the heavy snowfall. Also, the periodicity of GPS precipitable water vapor using the wavelet transform method was showed a similar cycle of saturated water vapor pressure as the limitation of this study span. The result shows that the decrement of GPS precipitable water vapor was conflicted with the increment of fresh snow depth at two sites, Gangneung and Uljin. The correlation between the GPS precipitable water vapor and the saturated water vapor pressure for the event was showed a positive correlation, compare with the non-heavy snowfall periods.

Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR (태풍 에위니아 영향력에서의 GPS 가강수량 변화 분석)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1033-1041
    • /
    • 2006
  • In this study, we calculated a space-time variation of GPS precipitable water vapor using GPS meteorology technique during a progress of the typhoon EWINIAR had made an effect on Korean peninsular at 10 July, 2006. We estimated tropospheric dry delay and wet delay for one hourly using 22 GPS permanent stations and precipitable water vapor was conversed by using surface meteorological data. The Korean weighted mean temperature and air-pressure of versa-reduction to the mean sea level have been used for an accuracy improvement of GPS precipitable water vapor estimation. Finally, we compared MTSAT water vapor image, radar image and precipitable water vapor map during a passage of the typhoon EWINIAR.

Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province (2014년 강원 폭설동안 GPS 가강수량 탐측)

  • JinYong, Nam;DongSeob, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.305-316
    • /
    • 2015
  • The GPS signal delays in troposphere, which are along the signal path between a transmitting satellite and GPS permanent station, can be used to retrieve the precipitable water vapor. The GPS remote sensing technique of atmospheric water vapor is capable of monitoring typhoon and detecting long term water vapor for tracking of earth’s climate change. In this study, we analyzed GPS precipitable water vapor variations during the heavy snowstorm event occurred in the Yeongdong area, 2014. The results show that the snowfall event were occurring after the GPS precipitable water vapor were increased, the maximum fresh snow depth was recorded after the maximum GPS precipitable water vapor was generated, in Kangneug and Wuljin, respectively. Also, we analyzed that the closely correlation among the GPS precipitable water vapor, the K-index and total index which was acquired by the upper air observation system during this snowstorm event was revealed.

ESTIMATING NEAR REAL TIME PRECIPITABLE WATER FROM SHORT BASELINE GPS OBSERVATIONS

  • Yang, Den-Ring;Liou, Yuei-An;Tseng, Pei-Li
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.410-413
    • /
    • 2007
  • Water vapor in the atmosphere is an influential factor of the hydrosphere cycle, which exchanges heat through phase change and is essential to precipitation. Because of its significance in altering weather, the estimation of water vapor amount and distribution is crucial to determine the precision of the weather forecasting and the understanding of regional/local climate. It is shown that it is reliable to measure precipitable water (PW) using long baseline (500-2000km) GPS observations. However, it becomes infeasible to derive absolute PW from GPS observations in Taiwan due to geometric limitation of relatively short-baseline network. In this study, a method of deriving Near-Real-Time PW from short baseline GPS observations is proposed. This method uses a reference station to derive a regression model for wet delay, and to interpolate the difference of wet delay among stations. Then, the precipitable water is obtained by using a conversion factor derived from radiosondes. The method has been tested by using the reference station located on Mt. Ho-Hwan with eleven stations around Taiwan. The result indicates that short baseline GPS observations can be used to precisely estimate the precipitable water in near-real-time.

  • PDF

Diurnal variation of atmospheric water vapor based on GPS observations over Taiwan

  • Cheng, Chihan;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1036-1038
    • /
    • 2003
  • Diurnal variations in the atmospheric vapor at Banchiao of Taiwan are studied by analyzing 30 min-averaged data in the summer of 1998. The surface meteorological measurements were mainly obtained from the Central Weather Bureau (CWB) of Taiwan. It is found that precipitable water (PW) is increased in the afternoon. The maximum of precipitable water appears at around 0900 LST. The diurnal range of precipitable water is larger on the days with than without rainfall events. Rainfall events often occur in the afternoon and early morning. We also examine the difference in the characteristics of the PW signatures with and without rainfall according to the occurrence of the times for the rainfall peak and the onset of rainfall.

  • PDF

Characteristics of Precipitable Water Vapor and Liquid Water Path by Microwave Radiometer (마이크로웨이브 라디오미터에서 관측된 가강수량 및 구름물량 특성 분석)

  • Yang, Ha-Young;Chang, Ki-Ho;Cha, Joo-Wan;Choi, Young-Jean;Ryu, Chan-Soo
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.233-241
    • /
    • 2012
  • Based on the observation of the microwave radiometers at Cheongju, Hapcheon and Daegwallyeong in Korea, the precipitable water vapor and liquid water path have been analyzed for spatio-temporal characteristics. The observed datas have been validated by comparing precipitable water vapor between the microwave radiometer and the radiosonde near the sites. It resulted in the correlation coefficient of more than 0.8 in all three sites. For three regions, the precipitable water vapor shows similar seasonal variation and diurnal cycle, and that amount of precipitable water vapor increases from around 1000 LST and has a maximum value at 1900 LST. On the other hand, the liquid water path of microwave radiometer has regional differences for its seasonal variation, which seems to be caused by the geographical characteristics including the frequent fog and clouds in Daegwallyeong, a high mountain region (834 m from sea level), almost flat land in Chengju, and Sobaek Mountains in Hapcheon that blocks the westerly clouds.

Statistical Estimates of Cloud Thickness and Precipitable Water from GMS Brightness Data (GMS Brightness를 사용한 구름 두께와 가강수량의 통계적 추정)

  • 최영진;신동인
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.153-164
    • /
    • 1990
  • A statistical correlation between cloud thickness and brightness is shown by regression analysis using the least-square method. Cloud thicknesses are obtained from radiosonde observation. Brightness values are obtained from GMS visible channel. Regression analyses are preformed on both thickness data used in conjunction with brightness data for summer season. The results are shown by the regression curve relating thickness and brightness accounting for 79% of variance. And the relationship between thickness and precipitable water in the cloud layers is analyzed. The thickness shows a positive correlation with precipitable water in cloudy layers.

Estimation of Total Precipitable Water in East Asia Using the MODIS Satellite Data

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.149-155
    • /
    • 2003
  • In this study. the amounts of the total precipitable water (TPW) in both global and regional scale are estimated from the MODIS instrument, which is on-board the EOS satellites, Terra and Aqua. The estimation is made from the five near-infrared spectral bands, using a technique employing ratios of water- vapor absorbing channels centered at 0.905, 0.936, 0.940 ${\mu}{\textrm}{m}$ with atmospheric window channels at 0.865 and 1.240 ${\mu}{\textrm}{m}$. Through analyses of monthly and eight-days mean TPW, one can monitor characteristics of seasonal variations as well as amount and distribution (i.e., water resources) of TPW at both global and local regions. Long-term monitoring of TPW is essential to understand the regional variations of water resources in East Asia.

Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology Application in Algeria

  • Song, Dong-Seob;Boutiouta, Seddik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.615-622
    • /
    • 2012
  • Since the accuracy of precipitable/integrated water vapor estimates from GNSS measurements is proportional to the accuracy of water vapor Weighted Mean Temperature Model (WMTM), the WMTM is a significant formulation in the retrieval of precipitable water vapor from zenith wet delay of GNSS signal. The purpose of this paper is to develop available the WMTM to apply for GNSS meteorology in the region of Algeria, by using the Algerian radiosonde network in the World Meteorological Organization (WMO). It can be concluded that the available GNSS precipitable water vapor which is retrieved by the developed Algerian Weighted Mean Temperature Equation (AWMTE) can be useful technique for sensing of water vapor in the Algeria, after Algerian Continuously Operating Reference System (CORS) will be constructed.

Total Precipitable Water Fields of Typhoons WALT(9407) & FAYE(9503) Derived from TOVS and SSM/I (TOVS 자료로 도출한 태풍(WALT(9407)과 FAYE(9503))에 동반된 총가강수량장)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 1998
  • The total precipitable water fields derived from HIRS(High Resolution Infrared Radiometer Sounder)and MSU(Microwave Sounding Unit) measurements of TOVS and brightness temperature of SSM/I were used to investigate the evolution of moisture fields for the Typhoon WALT(9407) which after landing in Japan it became tropical depression in Korea-Japan Strait, and FAYE(9503) which was the first tropical storm of 1995 to became a typhoon, respectively. The total precipitable water derived from TOVS observations is delineated according to the evolutions of WALT and FAYE movements because total precipitable water fields of TY WALT(9407) and FAYE9\(9503) were largely controlled by horizontal transport of water vapor over the Northwest Pacific Ocean which dominantly plays an important role in maintaining and accelerating their intensities toward Korea and Japan . These fields demonstrated that two major bands, which imply the rain bands, were locally well-organized and similar to the thick convective cloud features over Japan and the Korean peninsula while WALT and FAYE were approaching away and to. But the values of derived TOVS total precipitable water have shown the underestimate of those of SSM/I total comparatively for two typhoons.