• Title/Summary/Keyword: Precast slab track

Search Result 27, Processing Time 0.033 seconds

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

A Study on the Laterally Dynamic Characteristics and the Finite Elements of Concrete Slab Track (슬래브궤도에 대한 유한요소와 횡방향 동특성에 관한 연구)

  • 조병완;권병윤;태기호;마성운
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.500-507
    • /
    • 2001
  • In this study, Interaction among each element was construed by the unit of new stiffness matrix to analyze the finite element about Japanese precast concrete slab track and improved slab track. Dynamic analysis which is assumed a static analysis and a trainload on the transverse and the longitudinal load of the train into a series periodic function was performed by using the common program. And then, the difference of the movement between an improved section and an existing structure type was realized. Longitudinal static analysis indicated that the stress of the improved section is smaller than that of the protrusion of the existing slab track. And static and dynamic analysis on transverse load showed a little decrease of the displacement on new slab track. But the dynamic analysis result showed that new track system was considerably decreased by 30% compared with the existing Japanese slab track.

  • PDF

Evaluation for the Test Installation of Slab Track by Using Precast Concrete Panels (Precast Concrete Panel을 사용한 슬라브궤도 시험시공에 대한 평가)

  • Kim Soon-Cheol;Kong Sun-Yong;Kang Jeong-Ok;Lee Jong-Min;Han Kwang-Seob
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1071-1077
    • /
    • 2004
  • This paper is presenting the performance evaluation on the installed concrete panels. As a result of the evaluation, the resistance to track displacement of temporary support structure was improved and it resulted in the improvement of work stability during installation. And, by the application of new technology and the saving of concrete consumption, both workability and cost were improved and, therefore, the shorter project period and cost saving can be expected. Furthermore, as a result of noise & vibration measurement at site, it has shown good effects of anti-noise and anti-vibration. In conclusion, this process was proved as very effective for track improvement.

  • PDF

Physical Properties according to Temperature Change of the Cement-Asphalt Mortar for Precast Slab Track (프리캐스트 슬래브 궤도용 시멘트-아스팔트 유제 혼합 모르타르 충전재의 온도변화에 따른 물리적 특성)

  • Oh, Soo-Jin;Lee, Hu-Sam;Jang, Seung-Yup;Jeong, Yong;Jung, Young-Min;Yoon, Seob
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1273-1278
    • /
    • 2007
  • The cement-asphalt mortar is a mixture of cement and asphalt emulsion, and is utilized as a underpouring materials for the railway track which is used to fill under slab panel space so as to provide a stabilized track support and a tool for reduction of noise and vibration. To increase the workability of grouting, this study investigates the effect of temperature on cement-asphalt mortar by analyzing its physical and mechanical properties before/after hardening according to the temperature (10, 15, 20, 25, $30^{\circ}C$). According to the test results, it is found that as for the physical property of fresh cement-asphalt mortar the more mixture temperature become higher or lower, the more fluidity become worse. But by increasing reducing agent amount and its unit quantity, the required fluidity is met. The compressive strength as physical property of hardened cement-asphalt mortar become lower when temperature is lower but taking it by and large the physical properties of cement-asphalt mortar before/after hardening aren't so affected by temperature and well satisfy the requirement. And it has proved that rate of expansion and freezing and thawing resistance aren't affected by temperature.

  • PDF

Development of Precast Slab Track Reinforced with GFRP and Analysis of Behavior (GFRP로 보강된 프리캐스트 슬래브 궤도 개발 및 거동분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Moon, Do-Young;Kim, Yoo-Bong;Baek, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2072-2076
    • /
    • 2011
  • 철도 시스템에서 철도궤도와 레일은 주요한 신호 시스템의 일부로 사용되고 있으나 콘크리트 슬래브 궤도 내부의 철근으로 인한 신호전류 감소, 교란 등을 방지하기 위해 과도한 절연작업이 필요하다. 본 연구에서는 국내에서 기 개발된 프리캐스트 슬래브 궤도의 횡방향 철근을 GFRP 보강근으로 대체하여 절연작업의 감소를 가능하게 하였다. GFRP로 보강된 프리캐스트 슬래브 궤도의 설계과정과 정적 휨 시험과 단부의 연결철근 인발 시험을 통한 거동 분석 및 고찰 내용을 제시하였다. 휨 시험과 실스케일 인발 시험의 결과 정적 휨 강도는 정립된 설계법에 의해 적절한 강도를 가지고 있으나 기 개발된 연결철근의 위치와 형태는 온도 또는 수축으로 인해 발생할 수 있는 축력을 저항할 수 없음을 확인하였다.

  • PDF

PST Member Behavior Analysis Based on Three-Dimensional Finite Element Analysis According to Load Combination and Thickness of Grouting Layer (하중조합과 충전층 두께에 따른 3차원 유한요소 해석에 의한 PST 부재의 거동 분석)

  • Seo, Hyun-Su;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • Follofwing the accelerating speed-up of trains and rising demand for large-volume transfer capacity, not only in Korea, but also around the world, track structures for trains have been improving consistently. Precast concrete slab track (PST), a concrete structure track, was developed as a system that can fulfil new safety and economic requirements for railroad traffic. The purpose of this study is to provide the information required for the development and design of the system in the future, by analyzing the behavior of each structural member of the PST system. The stress distribution result for different combinations of appropriate loads according to the KRL-2012 train load and KRC code was analyzed by conducting a three-dimensional finite element analysis, while the result for different thicknesses of the grouting layer is also presented. Among the structural members, the largest stress took place on the grouting layer. The stress changed sensitively following the thickness and the combination of loads. When compared with a case of applying only a vertical KRL-2012 load, the stress increased by 3.3 times and 14.1 times on a concrete panel and HSB, respectively, from the starting load and temperature load. When the thickness of the grouting layer increased from 20 mm to 80 mm, the stress generated on the concrete panel decreased by 4%, while the stress increased by 24% on the grouting layer. As for the cracking condition, tension cracking was caused locally on the grouting layer. Such a result indicates that more attention should be paid to the flexure and tension behavior from horizontal loads rather than from vertical loads when developing PST systems. In addition, the safety of each structural member must be ensured by maintaining the thickness of the grouting layer at 40 mm or more.

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.