• Title/Summary/Keyword: Precambrian basement

Search Result 39, Processing Time 0.016 seconds

Interpretation of Subsurface Structure by 2-D Gravity Modeling Study (중력탐사를 이용한 2차원 Modelling study에 의한 지질구조 해석)

  • Wee, Soo-Meen;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.409-419
    • /
    • 1991
  • A gravity survey was conducted in the western Marquette district, Michigan, to delineate the subsurface structure and the relationship of the Proterozoic Marquette Range Supergroup rocks (Precambrian X) and Archean basement (Precambrian W) where the Republic, Michigan River, and Marquette troughs join. In order to accomplish these purposes, three hundred and forty gravity stations were established in the area of $380km^2$. Positive anomalies are associated with the Precambria X, metasedimentary sequence which has a higer density with respect to the Precambrian W, basement rocks. The dominant positive gravity anomalies follow the axes of the three troughs which are filled with Precambrian X rocks. Subsurface structure was modelled by using the Talwani method. Gravity model studies indicate that the Marquette trough is asymetrically shaped and steeply dipping at the north edge except in the eastern part of the study area. The interpretive results obtained from two dimensional model studies suggest that the basement structure of the study area is relatively flat, and that the troughs were formed contemporaneously.

  • PDF

Pb Isotopic Composition of Yeonhwa and Janggun Pb-Zn Ore Deposits and Origin of Pb: Role of Precambrian Crustal Basement and Mesozoic Igneous Rocks (연화 및 장군 연-아연 광상의 Pb 동위원소 조성 및 Pb의 근원: 선캠브리아 기저 지각 및 중생대 화성암의 역할)

  • Park Kye-Hun;Chang Ho Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.141-148
    • /
    • 2005
  • Lead isotopic compositions are analyzed from the sulfide minerals of the Yeonhwa, Janggun and Uljin deposits and from host limestone, intrusives, and basement rocks to reveal the source of Pb in these deposits. In the $^{206}Pb/^{204}Pb$ vs $^{207}Pb/^{204}Pb$ plot, Galenas from the Yeonhwa mine display relatively well defined positive linear array, similar to the Precambrian basement rocks of the Korean peninsula. A galena sample from the Uljin mine, Janggun limestone and the basement rocks also follow the variation of Yeonhwa mine. However, ore minerals from the Janggun mine, having relatively low $^{206}Pb/^{204}Pb$ values, reveal offset from such trend toward lower $^{207}Pb/^{204}Pb$ values. Considering the fact that Mesozoic igneous rocks and ores within the Gyeongsang basin display considerably lower $^{207}Pb/^{204}Pb$ values than basement rocks of the Korean peninsula, the deviation of Janggun ore minerals can be interpreted as to reflect mixing between leads from old continental crustal materials and from Mesozoic igneous rocks with more mantle signature. The lead of the Yeonhwa and Uljin mine, following trend of Precambrian basement rather well, seems to have been originated mostly from such basement. However, regarding that they occupy low $^{207}Pb/^{204}Pb$ side of the variation trend of the basement, the possibility of having some leads derived from the Mesozoic igneous rocks cannot be excluded.

Zircon morphology of the Pre-Cretaceous basement rocks and Cretaceous Hayang Group sandstones in the northeastern part of Gyeongsang Basin and its implication to provenance of the sandstones (경상분지 북동부 선백악기 기반암류와 백악기 하양층군 사암의 저어콘 결정 형태학 및 사암의 기원암)

  • 이윤종;이용태;김상욱;신영식;김중욱;하야시마사오;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.40-50
    • /
    • 2000
  • This study is aimed at elucidating the source rocks of the Hayang strata in the northeastern part of the Gyeongsang Basin. Zircon morphology was analyzed for sandstones from the Iljig, Hupyeongdong, and Jeomgog formations of the Hayang Group and Precambrian gneisses and Jurassic granites. Generally, the composite zircon crystals extracted from the basement rocks and the Hayang Group sandstones show short prismatic to middle prismatic shapes. {110)={100) prism type is dominant and (101) pyramid is the average of the zircon morphology data. Zircon index@) and the shape trend characteristics clearly show that the zircon crystal forms of the Iljig and Hupyeongdong sandstones are dominantly similar to those of the biotite banded gneiss and granite gneiss of Precambrian age. Zircon morphology of the Jeomgog sandstones is dominantly similar to those of the Jurassic granites. Referring to the reported paleocurrent result, the source rocks of the Iljig and Hupyeongdong formations are mainly the Precambrian gneisses distributed in the southeastern and northeastern parts, respectively. And Jeomgog sandstones were mainly derived from Cheongsong granite at Cheongsong uplift region in the eastern part. At the time of completion of the Hupyeongdong sedimentation, the Precambrian basement rocks were severely eroded and formed low topography. During the Jeomgog period, the Jurassic granites which intruded the Precambrian basement began to crop out on the surface. The basin widely extended toward the east and the exposed Jurassic granite of Cheongsong uplift region actively supplied the sediments to the basin.

  • PDF

Crustal evolution of the Precambrian basement in the Korean Peninsula

  • Lee, Seung-Gu;Hiroshi Shimizu;Akimasa Masuda;Song, Yong-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.124-131
    • /
    • 1992
  • The Sm-Nd isotopic data on the Precambrian gneisses from Gyeonggi and Sobaegsan Massifs are presented and the crustal evolution of the Precambrian basements of the Korean Peninsula is discussed with that of the Precambrian basements of East Asia. Sm-Nd isochron plots on whole rock samples from Sobaegsan Massif give the following ages and initial Nd values. Biotite gneisses: $1.05{\pm}0.07$ Ga with ${\varepsilon}_{Nd}$ (1.05 Ga)= $-12.5{\pm}0.4$ ($2{\sigma}$); granitic gneisses: $1.70{\pm}0.59$ Ga with ${\varepsilon}_{Nd}$ (1.70 Ga)=$+9.5{\pm}6$($2{\sigma}$). Initial Nd isotopic evolution diagram for the Precambrian orthogneisses from Sobaegsan Massif with the Precambrian orthogneisses in northeastern China and Japan reveals the existence of early Archean depleted-mantle in east Asia and suggests the prevalence of nearly common or similar source accountable for these Precambrian gneisses. Such a common source is shown to have LREE-enriched feature and to have been formed from the depleted-mantle in the late Archean of ca. 2.6 Ga. On the other hand, the Sobaegsan granitic gneisses in Korea are concluded to have different evolution history. Our Sm-Nd study clearly discloses that some Precambrian orthogneisses from Korea had evolved from the protolith having the similar or same geochemical properties with the Precambrian orthogneisses in Japan and northeastern China. In addition, crustal formation age of Gyeonggi Massif in southern Korea may be different from that of Sobaegasn Massif.

  • PDF

Precambrian Geology and Structure of the Central Region of South Korea

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.231-239
    • /
    • 1972
  • The central region of South Korea is composed of Precambrian formations and Jurassic Daebo granites and is divided tectonically into three provinces, that is, the Ok chon geosynclinal zone in the middle, the Kyonggi massif on the north and northwest side, and the Ryongnam massif on the south and southeast side. The general trend of the Okchon geosynclinal zone and the distribution of Daebo granites is northeast, the Sinian direction. The Kyonggi massif is composed of Precambrian Y onchon system, Sangwon system, gneisses, and Daebo granites, and the Ryongnam massif also Precambrian Ryongnam and Yulri systems, gneisses, and Daebo granites. Precambrian formations in both areas are of flysch type sediments and may be roughly correlated with each other. These formations except Sangwon and Yulri systems are thought to be early to middle Precambrian age and have acted as basement for the Okchon geosyncline where late Precambrian Okchon system was deposited. The Okchon geosynclinal zone is divided into paleogeosynclinal zone to southwestern parts where the Okchon system is distributed, and neogeosynclinal zone to northeastern parts where nonmetamorphosed Paleozoic sediments are dominantly cropped out. Both zones are separated by upthrust created by Daebo orogeny of Jurassic period, which continues southwesterly to bind the Okchon geosynclinal zone and the Ryongnam massif at southwestern parts bisecting Korea peninsula diagonally. Three periods of structural development are recognized in the area. Folds and faults of preTriassic age prevail in the Kyonggi massif. Many isoclinal folds and thrusts originated by Jurassic Daebo orogeny are aligned in the Okchon paleogeosynclinal zone paralleling to the geosynclinal axis so that same formation appears repeatedly in narrow strips, whereas fold axis in neogeosynclinal zone trerid west-northwesterly which might be of Triassic in age and modified by later Daebo orogeny. Discontinuity of geology and structure of Okchon geosynclinal zone is attributed to shifting of the geosyncline through geologic time.

  • PDF

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.

Petrochemical Study on the Precambrian Granitic Rocks in the Basement Area of Hambaeg Basin (함백익지(咸白益地) 기반지역(基盤地域)에 분포(分布)하는 선(先)캠브리아 화강암질암류(花崗岩質岩類)의 암석화학적(岩石化學的) 연구(硏究))

  • Yun, Hyun Sao;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.35-55
    • /
    • 1986
  • The area of this study is located in the Sang dong district, Youngwol Gun, Kangwon Do, where the Ogcheon fold belt comes into contact with the Ryongnam massif. The area is covered by the Precambrian metasedimentary rocks of Yulri Group in the south from the line of Ungyosan-Maebongsan-Jansan-Taebaegsan Mountains and by the Cambro-Ordovician sedimentary rocks of Choseon Supergroup in the north. The Choseon Supergroup unconformably overlies the Yulri group. Several granitic intrusives occur in the Precambrian and Cambro-Ordovician terrain. The purpose of this study is to clarify the geochronology, mineralogical composition, geochemical characteristics, petrogenesis and tectonic settings of the Precambrian granitic rocks, and to evaluate the P.T. conditions of granitic intrusions. The K/Ar ages obtained from the muscovite of Nonggeori Granite, Naedeogri granite and pegmatite intruded into the Yulri Group are Early Proterozoic ($1805{\pm}18Ma$ to $1642{\pm}23Ma$), and those from the migmatitic pegmatite are Late Carboniferous ($305{\pm}4Ma$), respectively. The Precambrian granitic rocks are characterized by the presence of muscovite, tourmaline and grey feldspar with faint lineation of mafic minerals. In terms of mineralogical and chemical composition, the granitic rocks are felsic, calc-alkalic, peraluminous and S-type (ilmenite-series). The geochemical characteristics of major and trace elements indicate that the granitic rocks belong to syn-collision setting at the compressional plate margin. They were formed by progressive melting of relatively homogeneous crustal materials under 1~3kb and $670^{\circ}{\sim}720^{\circ}C$ in aqueous fluid conditions, and the Naedeogri granite was more fractionated than the Nonggeori granite. During the Taebaeg disturbance, Nonggeori granite, Naedeogri granite and pegmatite were intruded and emplaced into the Yulri Group. Migmatitic pegmatite occurring in the southwestern area, however, gave much younger muscovite age than the pegmatite intruded into the Yulri Group in rest of the area did, that might be due to the regional metamorphism of the Post-Choseon disturbance. The Geodo granitic mass and the Imog granite were intruded during the Bulgugsa disturbance.

  • PDF

Geological Structures of the Imgye Area, Kangweondo, Korea (강원도(江原道) 임계지역(臨溪地域)의 지질구조(地質構造))

  • Kim, Jeong Hwan;Kee, Weon Seo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 1991
  • The Imgye area, in the NE Taebaegsan Region, consists of Precambrian granites and schist complex at the base and Paleozoic sedimentary rocks and amphibolite at cover. The granites in the area were previously thought to be Paleozoic in age, but recent geochronological data yields isotopic age ranging from $1837{\pm}82Ma$ to $2108{\pm}82Ma$ by Rb-Sr whole rock method. Therefore, basement-cover relations in the area should be reexamined. During the study, mylonite zone recognized along the contact boundary between Precambrian granites and Cambrian Jangsan Quartzite Formation. Mylonite zone has 150 - 250 m in width. Mylonitic rocks can divide into two groups; quartz mylonite derived from Jangsan Formation and mylonitic granites from Precambrian granites. Intensity of mylonitic foliation decreased toward the north. Amphibolite occurs as an intrusive sills within mylonite zone. Mineral fabrics and small scale shear zones are commonly seen in amphibolite. It indicates that intrusive age of amphibolite is synchronous to the formation of mylonite zone. Mylonite zone was reactivated as ductile thrust faults and forms the hinterland dipping imbricate zone during the Cretaceous Bulkuksa Orogeny. The near parallelism of mineral stretching lineation and long axis of strain ellipes indicates that the area is affected by a homogeneous pure shear flattening together with the variable components of simple shear.

  • PDF

Geology and Geological Structure around Harar, NE Ethiopia (에티오피아 북동부 하라르 일대의 지질과 지질구조)

  • Ryoo, Chung-Ryul;Heo, Cheol-Ho;Yang, Seok-Jun;Alemu, Tadesse
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.65-75
    • /
    • 2015
  • Around Harar in the northeastern part of the Ethiopia, the Precambrian granitic gneiss and gabbro bodies are developed with several pegmatites. The rock bodies in this area have been deformed by ductile and brittle deformations developing fold and ductile shear structure, and thrust and fault.

Geochemistry of Precambrian Metamorphic Rocks from Yongin-Anseong Area, the Southernmost Part of Central Gyeonggi Massif (경기육괴 중부 남단(용인-안성지역)에 분포하는 선캠브리아기 변성암류의 지구화학적 특징)

  • 이승구;송용선;증전창정
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • The metamorphic rocks of Yongin-Anseong area in Gyeonggi massif are composed of high-grade gneisses and schists which are considered as Precambrian basement, and Jurassic granite which intruded the metamorphic rocks. In this paper, we discuss the geochemical characteristics of metamorphic rocks and granites in this area based on REE and Nd isotope geochemistry. And we also discuss the petrogenetic relationship between metamorphic rocks and granites in this area. Most of Nd model ages (T$\_$DM/$\^$Nd/) from the metamorphic rocks range ca. 2.6Ga~2.9Ga which are correspond to the main crustal formation stage in Gyeonggi massif by Lee et. al. (2003). And Nd model ages show that the source material of quartzofeldspathic gneiss is slightly older than that of biotite banded gneiss. In chondrite-normalized rare earth element pattern, the range of (La/Yb)$\_$N/ value from biotite banded gneiss is 37~136, which shows sharp gradient and suggests that biotite banded gneiss was originated from a strongly fractionated source material. However, that of amphibolite is 4.65~6.64, which shows nearly flattened pattern. Particularly, the chondrite normalized REE patterns from the high-grade metamorphic rocks show the REE geochemisoy of original source material before metamorphism. In addition, the values of (La/Yb)$\_$N/ and Nd model ages of granite are 32~40 and 1.69Ga~2.08Ga, respectively, which suggest that the source material of granite is different from that of Precambrian basement such as biotite banded gneiss and quartzofeldspthic gneiss in the area.