• Title/Summary/Keyword: Preantral Follicle

Search Result 55, Processing Time 0.031 seconds

Distribution of Cat Follicles among Varying Ages and Preantral Follicles Maturation (고양이 연령에 따른 발육단계별 난포의 분포와 전동난포의 배양)

  • Yu I.;Leibo S.P.;Dresser B.C;Kim Y.J.;Kim I.S.;Park Y.J.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2006
  • This study was conducted to determine the distribution of cat follicles among varying ages and produce oocytes from preantral follicles cultured in vitro. We used ovaries from 41 cats ranging in age from 0.3 to 5 years. Ovaries were obtained from cats undergoing routine ovariectomy at local veterinary clinics. As a prelude to in vitro culture of preantral follicles, the length and the width and the weight of ovaries among cats of varying ages were measured. Ovaries were fixed in 10% formalin, embedded in paraffin, cut into $3{\mu}m$-sections, mounted on slides and stained with hematoxylin and eosin. Follicles were evaluated at 200X and 400X magnification. Distribution of follicles among cats of varying ages were evaluated according to follicle classification: primordial, primary, transitional, preantral and antral follicles. Preantral follicles were isolated by the simple mechanical procedure. Each follicle was cultured in a well containing $100{\mu}l$ of medium 199 supplemented with 10% fetal bovine serum (FBS) or polyvinylalcohol (PVA) for 16 days. Follicle diameters were measured under inverted microscope every 4 days. The length, the width and the weight of ovaries were increased gradually according to ages but there was not significant difference among cats of varying ages. Majority of follicles were primordial follicles (84%) regardless of cat ages (p<0.05). Follicle diameter increased until 4 days of culture. However, period longer than 4 days of culture in vitro had a deleterious effect on follicle survival regardless of supplement (FBS or PVA). A few oocytes were collected from preantral follicles cultured in vitro. These basic reproductive techniques in domestic cats can be a useful tool to save endangered feline species.

In Vitro Growth and Development of Mouse Preantral Follicles

  • Kim, Dong-Hoon
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.9-9
    • /
    • 2000
  • The mammalian ovary has a large number of primordial and preantral follicles, which are a potential source of oocytes for the in vitro mass production of embryos. Several in vitro culture systems have been developed to support the growth and development of oocytes from mouse preantral follicles. Under the appropriate condition, meiotically incompetent oocytes from preantral follicles can grow to final size and complete nuclear maturation in vitro. Furthermore, the successful production of live young from in vitro grown and matured oocytes demonstrates that oocytes from preantral follicles are able to acquire full developmental capacity in vitro. However, the efficiency of in vitro production of embryos from mouse preantral follicles is still low. In farm animals as well as human, the growth of oocyte from preantral follicle to the meiotic competence stage has yet to be demonstrate. Therefore, further studies to improve the culture condition or to develope new culture system should be needed in the future. In addition, the visible progress in the establishment of the in vitro culture system for preantral follicles of farm animals and human could help to enlarge the populations of valuable agricultural, phamaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that jeopardize oocytes.

  • PDF

Developmental Competence of Intrafollicular Oocytes Derived from Preantral Follicle Culture with Different Protocols after Parthenogenetic Activation

  • Choi, Jung Kyu;Lee, Jae Hee;Lee, Seung Tae;Choi, Mun Hwan;Gong, Seung Pyo;Lee, Eun Ju;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1190-1195
    • /
    • 2007
  • This study was conducted to improve efficiency of a follicle culture system without reducing developmental competence of intrafollicular oocytes. Preantral follicles (100 to $125{\mu}m$ in diameter) of F1 hybrid (B6CBAF1) mice were cultured singly for 216 h in modified ${\alpha}$-MEM-glutamax medium, to which 2.5 IU/ml hCG and epidermal growth factor was added 16 h prior to the end of culture. Medium change was either performed three times (54 h interval), twice (72 h interval), once (108 h interval), or not at all (216 h interval). Maturation (progression to the metaphase II stage) of intrafollicular oocytes was detected from 4 days after culture in the three-times change treatment, while all treatments yielded mature oocytes from day 5 of culture. Compared with the three-times change, decreasing the change frequency to once did not reduce the capacity to begin maturation (germinal vesicle breakdown of 82 to 86%), to mature (78 to 79%) and to develop into blastocysts after parthenogenetic activation (29 to 32%). Morphological parameters were similar among these treatments. Except for the no medium change treatment, similar colony-forming activity of inner cell mass cells after culturing of blastocysts in leukemia inhibitory factor-containing medium was detected, while the morphology of the colony-forming cells deteriorated in the change-once treatment compared with the change twice or three-times. In conclusion, the efficiency of the preantral follicle culture system could be improved by reducing frequency of medium change up to a 72 h interval (three times in total 216 h culture) without decreasing developmental competence of oocytes.

In Vitro Growth of Bovine Preantral Follicle under Different Culture Conditions

  • Lim, Hyun-Joo;Kim, Dong-Hoon;Im, Gi-Sun;Hwang, Seong-Soo;Baek, Kwang-Soo;Jeon, Byeong-Soon;Park, Sung-Jai;Kim, Hyeon-Shup;Lim, Jeong-Mook
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.189-194
    • /
    • 2009
  • The objective of this study was to determine effects of different culture media. Preantral follicles were mechanically extracted from bovine ovaries and cultured for 16 days in tissue culture medium (TCM)-199, DMEM or alpha-minimal essential medium ($\alpha$-MEM) + 10% FBS + 0.1 mg/ml sodium pyruvate + 100 mIU/ml FSH. The collected primary follicles from ovary were higher than the primary and secondary follicles. The survival rates of the follicles in TCM-199 were significantly higher (p<0.05) than those in DMEM and $\alpha$-MEM. The diameter of the follicles progressively increased during 12 days of culture. The maximum size ($139.1{\pm}5.4\;{\mu}m$) reached on Day 12 of the in vitro culture and decreased on Day 16. These results suggest that in a culture of bovine preantral follicles, TCM-199 is an optimal medium and a longer-term culture of preantral follicles (>12 days) may be needed to form antra.

In Vitro Maturation, Fertilization and Development of Mouse Oocytes Derived from In Vitro Grown Preantyal Follicles (체외성장된 Preantral Follicle에서 유래된 생쥐난자의 체외성숙, 수정 및 발달)

  • Kim, D.H.;Lee, H.J.;K.S. Chung;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2002
  • The objective of this study was to examine maturation, fertilization and developmental rate of the in vitro-grown mouse oocytes, and to compare these results with those of oocytes grown and matured in vivo. The preantral follicles isolated from 12-day-old mice were cultured on Transwell-COL membrane inserts. After in vitro growth and maturation, 72.5 % of oocytes grown in vitro produced polar body which can be comparable to in vivo growth (70.5 %). However, the mean oocyte diameter of the in vitro group (69.6$\pm$2.1$\mu$m) was smaller than that of the in vivo group (73.3$\pm$3.0$\mu$m). The fertilization rate was significantly lower (p<0.05) in the in vitro group (76.5%) than in the in vivo group (90.2%), however, there was no difference in the percentage of monospermic and polyspermic oocytes between two groups. The capacities of in vitro grown ova to cleave and develop to blastocyst were (57.8 and 14.4%, respectively) significantly lower (p<0.001) than those of the in vivo counterpart (84.4 and 56.6%, respectively). Moreover, the mean number of cells per blastocyst was significantly lower (p<0.05) in the in vitro group (39.0$\pm$10.8) than in the in vivo group (60.5$\pm$12.5). Live young were produced from transferred 2-cell embryos derived from in vitro-grown and matured oocytes. In conclusion, the results show that in vitro-grown oocytes did not achieve the developmental capacity of in vitro-grown oocytes.

Control Mechanisms of Ovarian Follicle Development by Follicle Stimulating Hormone and Pituitary Adenylate Cyclase-activating Polypeptide (난포자극호르몬과 Pituitary Adenylate Cyclase-activating Polypeptide에 의한 난소의 난포성장)

  • Lee, Yu-Il;Shin, Jin-Ok;Kim, Mi-Young;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Objective: Pituitary adenylate cyclase-activating polypeptide (PACAP), a novel hypothalamic neuropeptide, has been suggested to play a role in ovarian folliculogenesis. The present study evaluated the effect of PACAP on the growth of preantral follicles. Methods: Preantral follicles were mechanically isolated from ovaries of 21-day-old rats and cultured in groups for 3 days in serum-free medium in the absence or presence of PACAP-38 ($10^{-6}M$). Results: Treatment with PACAP-38 resulted in an increase in follicle diameter by 75% whereas treatment with follicle stimulating hormone (FSH) increased follicle diameter by 65%. PACAP-38 treatment enhanced the granulosa cell proliferation as measured by thymidine incorporation analysis. Furthermore, the production of progesterone by cultured granulosa cells and GFSHR-17 cell line was stimulated by PACAP-38. Interestingly, PACAP enhanced FSH action on stimulation of SF-1 and aromatase gene expression. Conclusion: The present results demonstrate that PACAP stimulated preantral follicle growth by potentiating proliferation and by stimulating steroidogenesis.

Gamma-Radiation Induced Apoptotic and Inflammatory Degeneration of Mouse Ovarian Follicles : Informative Biological-End Point for Disaster-Prevention

  • Kim, Jin-Kyu;Chun, Ki-Jung;Lee, Chang-Joo;Lee, Kyoung-Hee;Kim, Seul-Kee;Yoon, Yong-Dal
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.255-260
    • /
    • 2001
  • In mammals, most of the follicles can not be ovulated, and instead, are degenerated throughout the entire reproductive period. However, the precise mechanism of follicle atresia is unknown. Three weeks old female mice (ICR strain) were ${\gamma}$-irradiated with a dose of LD$^{50}$ . Before irradiation (day 0) and at day 1, 2, and 3 after irradiation, the normal and atretic preantral and antral follicles of the left ovaries were morphologically observed. Atretic follicles at 2 days after irradiation had numerous cell debris, apoptotic cells and bodies, and polymorphonuclear leukocytes in the antral cavity. In severely atretic follicles, numerous polymorphonuclear leukocytes infiltrated into the follicle. The frequencies of atretic antral (58.0 $\pm$8.6) and preantral follicles (27.3$\pm$11.2) induced by ${\gamma}$-radiation increased to 94.0$\pm$3.4 and 86.9$\pm$7.6, respectively at 2 days after irradiation (p<0.05). The number of follicles with one or more neutrophils in the largest cross sections at 2 and 3 days after irradiation significantly increased (p<0.05). It can be concluded that ${\gamma}$-radiation triggers the recruitment of neutrophils into the follicles during degeneration. The ovarian follicles can make a role of informative biological end-point useful for disaster-prevention.

  • PDF

In vitro Culture Conditions for the Mouse Preantral Follicles Isolated by Enzyme Treatment

  • Kim, Dong-Hoon;Seong, Hwan-Hoo;Lee, Ho-Joon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.532-537
    • /
    • 2008
  • In order to investigate the factors affecting the culture of mouse preantral follicles in vitro, we examined the effect of culture media, protein supplements, and culture period on their growth. The oocyte diameter (initial size: $55.6{\pm}2.5{\mu}m$) was progressively increased during culture, and the maximum size ($72.0{\pm}2.4{\mu}m$) was reached on day 10 of the in vitro culture. The chromatin configuration in the germinal vesicle (GV) oocyte progressively shifted from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN). On day 10 of the culture, most of the oocytes progressed to the SN pattern. The survival and metaphase II rates of the oocytes in alpha-minimal essential medium (alpha-MEM) were significantly higher (p<0.05) than those in Waymouth and tissue culture medium (TCM)-199. As a protein source, fetal bovine serum (FBS) was more suitable for the culture of mouse preantral follicles as compared to human follicular fluid (hFF) and bovine serum albumin (BSA); the optimal concentration of FBS was 5%. These results suggest that in a culture of mouse preantral follicles, alpha-MEM and 5% FBS are an optimal medium and a protein source, respectively; further, the 10 days of culture is required for the complete growth of oocytes in this culture system.

In vitro-growth and Gene Expression of Porcine Preantral Follicles Retrieved by Different Protocols

  • Ahn, J.I.;Lee, S.T.;Park, J.H.;Kim, J.Y.;Park, J.H.;Choi, J.K.;Lee, G.;Lee, E.S.;Lim, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.950-955
    • /
    • 2012
  • This study was conducted to determine how the isolation method of the porcine preantral follicles influenced the following follicular growth in vitro. Mechanical and enzymatical isolations were used for retrieving the follicles from prepubertal porcine ovaries, and in vitro-growth of the follicles and the expression of folliculogenesis-related genes were subsequently monitored. The enzymatic retrieval with collagenase treatment returned more follicles than the mechanical retrieval, while the percentage of morphologically normal follicles was higher with mechanical retrieval than with enzymatic retrieval. After 4 days of culture, mechanically retrieved, preantral follicles yielded more follicles with normal morphology than enzymatically retrieved follicles, which resulted in improved follicular growth. The mRNA expression of FSHR, LHR Cx43, DNMT1 and FGFR2 genes was significantly higher after culture of the follicles retrieved mechanically. These results suggest that mechanical isolation is a better method of isolating porcine preantral follicles that will develop into competent oocytes in in vitro culture.

The Effect of Fibroblast Co-culture on In Vitro Maturation of Mouse Preantral Follicles

  • Kim, Chung-Hoon;Cheon, Yong-Pil;Lee, You-Jeong;Lee, Kyung-Hee;Kim, Sung-Hoon;Chae, Hee-Dong;Kang, Byung-Moon
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • This study was performed to evaluate the effects of fibroblast co-culture on in vitro maturation (IVM) of prepubertal mouse preantral follicles. The intact preantral follicles were obtained from the ovaries of 12-14 day old mice and these were cultured individually in ${\alpha}$-minimal essential medium (${\alpha}$-MEM) supplemented with 5% fetal bovine serum (FBS), $100mIU/m{\ell}$ recombinant follicle stimulating hormone (rFSH), 1% insulin-transferrin-selenium, $100{\mu}g/ml$ penicillin and $50{\mu}g/m{\ell}$ streptomycin as base medium for 12 days. A total of 200 follicles were cultured in base medium co-cultured with mouse embryonic fibroblast (MEF) (MEF group) (n=100) or only base medium as control group (n=100). Survival rate of follicles on day 12 of culture were significantly higher in the MEF group of 90.0%, compared with 77.0% of the control group (p=0.021). Follicle diameters on day 6 and 8 of the culture period were significantly larger in the MEF group than those in the control group (p=0.021, p=0.007, respectively). Estradiol levels in culture media on day 4, 6, 8, 10 and 12 of the culture period were significantly higher in the MEF group (p=0.043, p=0.021, p=0.006, p<0.001 and p=0.008, retrospectively). Our data suggest that MEF cell co-culture on IVM of mouse preantral follicle increases survival rate and promotes follicular growth and steroid production.