• 제목/요약/키워드: Pre-trained Model

검색결과 286건 처리시간 0.029초

사전학습 된 언어 모델 기반의 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 이용한 참고문헌 메타데이터 인식 연구 (A Study on Recognition of Citation Metadata using Bidirectional GRU-CRF Model based on Pre-trained Language Model)

  • 지선영;최성필
    • 정보관리학회지
    • /
    • 제38권1호
    • /
    • pp.221-242
    • /
    • 2021
  • 본 연구에서는 사전학습 된 언어 모델을 기반으로 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 활용하여 참고문헌을 구성하는 메타데이터를 자동으로 인식하기 위한 연구를 진행하였다. 실험 집단은 2018년에 발행된 학술지 40종을 대상으로 수집한 PDF 형식의 학술문헌 53,562건을 규칙 기반으로 분석하여 추출한 참고문헌 161,315개이다. 실험 집합을 구축하기 위하여 PDF 형식의 학술 문헌에서 참고문헌을 분석하여 참고문헌의 메타데이터를 자동으로 추출하는 연구를 함께 진행하였다. 본 연구를 통하여 가장 높은 성능을 나타낸 언어 모델을 파악하였으며 해당 모델을 대상으로 추가 실험을 진행하여 학습 집합의 규모에 따른 인식 성능을 비교하고 마지막으로 메타데이터별 성능을 확인하였다.

Korean Patent ELECTRA : 한국 특허문헌 자연어처리 연구를 위한 사전 학습된 언어모델(KorPatELECTRA) (Korean Patent ELECTRA : a pre-trained Korean Patent language representation model for the study of Korean Patent natural language processing(KorPatELECTRA))

  • 민재옥;장지모;조유정;노한성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.69-71
    • /
    • 2021
  • 특허분야에서 자연어처리 태스크는 특허문헌의 언어적 특이성으로 문제 해결의 난이도가 높은 과제임에 따라 한국 특허문헌에 최적화된 언어모델의 연구가 시급한 실정이다. 본 논문에서는 대량의 한국 특허문헌 데이터를 최적으로 사전 학습(pre-trained)한 Korean Patent ELECTRA 모델과 tokenize 방식을 제안하며 기존 범용 목적의 사전학습 모델과 비교 실험을 통해 한국 특허문헌 자연어처리에 대한 발전 가능성을 확인하였다.

  • PDF

농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교 (Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification)

  • 윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

양방향 인재매칭을 위한 BERT 기반의 전이학습 모델 (A BERT-based Transfer Learning Model for Bidirectional HR Matching)

  • 오소진;장문경;송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제28권4호
    • /
    • pp.33-43
    • /
    • 2021
  • While youth unemployment has recorded the lowest level since the global COVID-19 pandemic, SMEs(small and medium sized enterprises) are still struggling to fill vacancies. It is difficult for SMEs to find good candidates as well as for job seekers to find appropriate job offers due to information mismatch. To overcome information mismatch, this study proposes the fine-turning model for bidirectional HR matching based on a pre-learning language model called BERT(Bidirectional Encoder Representations from Transformers). The proposed model is capable to recommend job openings suitable for the applicant, or applicants appropriate for the job through sufficient pre-learning of terms including technical jargons. The results of the experiment demonstrate the superior performance of our model in terms of precision, recall, and f1-score compared to the existing content-based metric learning model. This study provides insights for developing practical models for job recommendations and offers suggestions for future research.

Document Classification Methodology Using Autoencoder-based Keywords Embedding

  • Seobin Yoon;Namgyu Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.35-46
    • /
    • 2023
  • 본 연구에서는 문서 분류기의 정확도를 높이기 위해 문맥 정보와 키워드 정보를 모두 사용하는 이중 접근(Dual Approach) 방법론을 제안한다. 우선 문맥 정보는 다양한 자연어 이해 작업(Task)에서 뛰어난 성능을 나타내고 있는 사전학습언어모델인 Google의 BERT를 사용하여 추출한다. 구체적으로 한국어 말뭉치를 사전학습한 KoBERT를 사용하여 문맥 정보를 CLS 토큰 형태로 추출한다. 다음으로 키워드 정보는 문서별 키워드 집합을 Autoencoder의 잠재 벡터를 통해 하나의 벡터 값으로 생성하여 사용한다. 제안 방법을 국가과학기술정보서비스(NTIS)의 국가 R&D 과제 문서 중 보건 의료에 해당하는 40,130건의 문서에 적용하여 실험을 수행한 결과, 제안 방법이 문서 정보 또는 단어 정보만을 활용하여 문서 분류를 진행하는 기존 방법들에 비해 정확도 측면에서 우수한 성능을 나타냄을 확인하였다.

딥러닝과 다양한 데이터 증강 기법을 활용한 주변국 군용기 기종 분류에 관한 연구 (A Study on the Classification of Military Airplanes in Neighboring Countries Using Deep Learning and Various Data Augmentation Techniques)

  • 이찬우;황하준;권혁;백승령;김우주
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.572-579
    • /
    • 2022
  • The analysis of foreign aircraft appearing suddenly in air defense identification zones requires a lot of cost and time. This study aims to develop a pre-trained model that can identify neighboring military aircraft based on aircraft photographs available on the web and present a model that can determine which aircraft corresponds to based on aerial photographs taken by allies. The advantages of this model are to reduce the cost and time required for model classification by proposing a pre-trained model and to improve the performance of the classifier by data augmentation of edge-detected images, cropping, flipping and so on.

Deep Learning-Enabled Detection of Pneumoperitoneum in Supine and Erect Abdominal Radiography: Modeling Using Transfer Learning and Semi-Supervised Learning

  • Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
    • Korean Journal of Radiology
    • /
    • 제24권6호
    • /
    • pp.541-552
    • /
    • 2023
  • Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.

Development of Tourism Information Named Entity Recognition Datasets for the Fine-tune KoBERT-CRF Model

  • Jwa, Myeong-Cheol;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권2호
    • /
    • pp.55-62
    • /
    • 2022
  • A smart tourism chatbot is needed as a user interface to efficiently provide smart tourism services such as recommended travel products, tourist information, my travel itinerary, and tour guide service to tourists. We have been developed a smart tourism app and a smart tourism information system that provide smart tourism services to tourists. We also developed a smart tourism chatbot service consisting of khaiii morpheme analyzer, rule-based intention classification, and tourism information knowledge base using Neo4j graph database. In this paper, we develop the Korean and English smart tourism Name Entity (NE) datasets required for the development of the NER model using the pre-trained language models (PLMs) for the smart tourism chatbot system. We create the tourism information NER datasets by collecting source data through smart tourism app, visitJeju web of Jeju Tourism Organization (JTO), and web search, and preprocessing it using Korean and English tourism information Name Entity dictionaries. We perform training on the KoBERT-CRF NER model using the developed Korean and English tourism information NER datasets. The weight-averaged precision, recall, and f1 scores are 0.94, 0.92 and 0.94 on Korean and English tourism information NER datasets.

Segmentation 기반 전동킥보드 주차/비주차 구역 분류 기술의 개발 (Development of segmentation-based electric scooter parking/non-parking zone classification technology)

  • 조용현;최진영
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.125-133
    • /
    • 2023
  • 본 논문은 공유형 전동킥보드 시스템 운영 시, 관리 상 발생할 수 있는 주차 문제를 해결하기 위해 반납 인증사진으로 주차, 비주차 구역을 판단하는 AI모델을 제시한다. 본 연구에서는 주차/비주차 구역 배경 관련 객체를 판별하기 위해 ADE20K에 Pre_trained된 Segfomer_b0 모델과 점자블록, 전동킥보드에 Fine_tuning한 Segfomer_b0 모델을 통해 주차/비주차에 관련된 객체의 Segmentation map을 추출하고, Swin 모델을 통해 주차/비주차 구역을 이진 분류하는 방법을 제시하였다. 최종적으로 총 1,689장을 직접 라벨링한 후 진행한 Fine_tuning SegFomer 모델은 mAP가 81.26% 수준으로 전동킥보드와 점자블록을 인식하였으며, 총 2,817장을 훈련한 Classification 모델은 92.11%의 정확도와 91.50%의 F1-Score로 주차구역과 비주차 구역을 분류하는 것이 가능하였다.

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.