• 제목/요약/키워드: Pre-tension

검색결과 225건 처리시간 0.021초

Vasodilation Effect of the Water Extract of Rheum palmatum L. in Rat Thoracic Aorta.

  • Koo, Bon-Sik;Kim, Hong-Yeoul;Park, Seong-Kyu
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.203-203
    • /
    • 2002
  • Rheum palmatum L. has been used for treatment of hypertension, lipemia, and paramenia in the oriental gerbal medicines for a long time. We have examined the relaxational response to the water extract of Rheum palmaum L. in isolated thoracic aorta from sprague dawley (SD) rat in the presence and absence of endothelium. Rat thoracic aorta was investigated in vessel segments suspended for isometric tension recording by polygraph. Responses to Rhizoma Rhei were investigated in vessels precontracted with 5-hydroxytryptamine. We found that the ghoracic aorta segments responded to the water extract of Rheum palmatum L. (ERP) with a dose-dependent vasorelaxation. We found that 1.The thoracic aorta sehments responded to ERP with a dose-dependent vasodiliation. 2.The 5-HT induced contraction at 10$\^$-4/M were inhibited by 85.8% after addition of the 0.1 g/mL water extract of ERP. 3. The 5-HT induced contraction at 10$\^$-4/ M with and without endothelium were inhibited by 86.4% and 85.8% after addition of the 0.1g/mL ERP. 4. After pre-treatment of the thoracic aorta with 10$\^$-4/M N$\^$G/-monomethyl-L-arginine(L-NMMA), inducible niric oxide synthase inhibitor, the vessels has not response to the contraction. In conclusion, ERP induced reaxation in the isolated rat thoracic aorta were composed of dose-dependent relaxation. and it has potent vasodilation.

  • PDF

가상현실과 전통적 균형훈련이 기능적 발목 불안정성 환자의 균형에 미치는 효과 (The Effects of Virtual Reality Training and Traditional Balance Training on Balance in Patients with Functional Ankle Instability)

  • 김수현;박소희;김다정;곽유진;신연진;김수진
    • PNF and Movement
    • /
    • 제18권2호
    • /
    • pp.183-194
    • /
    • 2020
  • Purpose: Functional ankle instability (FAI) causes tension in the joints, ligaments, and tendons, and the impact on visual and vestibular organs leads to imbalance. This study compared the effects of a traditional balance training program to virtual reality training to improve FAI. Methods: Twenty-four participants with FAI (CAIT score < 24) were assigned to a virtual reality training group (n = 13) and a traditional balance training group (n = 11). Both groups pursued their respective training program for four weeks. After a ten-minute warm-up, participants completed a 30-minute training session, three times per week. The traditional balance training group underwent static and dynamic training using a balance board and a stability trainer pad while the virtual reality group underwent balance training using a virtual reality program. Biorescue was used to measure changes in the speed and length of center of pressure (COP) for single-leg stance pre- and post-training. Results: The speed and length of COP improved significantly in both groups after training as compared to before (p < 0.05). However, there were no significant differences in these outcomes between the virtual reality training group and the traditional balance training group (p>0.05). Conclusion: The study findings confirm the effectiveness of both virtual reality training and traditional balance training in reducing ankle instability, with no difference in treatment effects.

차세대 고속철도의 집전성능 예측 및 향상 방안에 관한 연구 (A Study on the Estimation and Improvement of the Current Collection Performance for the Next Generation High-Speed Train (HEMU-430X))

  • 이진희;박태원
    • 한국철도학회논문집
    • /
    • 제15권5호
    • /
    • pp.429-435
    • /
    • 2012
  • 차세대 고속철도(HEMU-430X)는 최고 속도 430km/h, 운영 속도 370km/h를 목표로 개발 중인 세계적 수준의 철도 차량이다. 시속 300km 이상의 운영 속도를 유지하기 위하여 충족해야 할 요건들은 다양하지만 주행 중 안정적인 전력 공급 여부는 상용화를 결정짓는 핵심기술 중 하나이다. 따라서 고속에서의 가선과 판토그래프의 동적 상호작용은 사전 평가를 통하여 충분히 검토되어야 한다. 본 논문에서는 다물체 동역학 해석 기법을 기반으로 한 집전성능 해석 프로그램을 이용하여 차세대 고속철도의 집전성능을 평가하였다. 국제 규정을 기반으로 기존 사양에 대한 성능 평가를 실시하고, 추가적으로 장력 및 경간 길이 변화에 따른 평가 결과를 토대로 집전성능 향상 방안에 대하여 고찰하였다.

성향정기산(星香正氣散)이 가토(家兎)의 경동맥(頸動脈) 평골근(平滑筋) 절편(切片)에서 t-Butyl Hydroperoxide 에 의한 지질과산화(脂質過酸化) 및 수축(收縮)에 미치는 영향(影響) (Effect of Sunghyangchungi-san (Xingxiangzhengqi-san) on Contraction and Lipid Peroxidation Induced by t-Butyl Hydroperoxide in Isolated Rabbit Carotid Artery)

  • 김영균;김종훈
    • 대한한의학회지
    • /
    • 제20권3호
    • /
    • pp.77-86
    • /
    • 1999
  • This study was undertaken to evaluate the effect of Sunghyangchungi-san (SHCS) on the oxidant-induced contraction and lipid peroxidation in rabbit carotid artery. Vascular rings isolated from rabbit carotid artery were exposed to t-butyl hydroperoxide (t-BHP), an extrinsic oxidant, and the effect of SHCS on the changes of vascular tension and lipid peroxidation induced by t-BHP was determined. t- BHP induced a slowly developing and sustained contraction of the arterial rings. SHCS effectively relaxed the arterial rings that were pre-contracted by t-BHP. The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to t-BHP, it inhibited the t-BHP-induced contraction as well. t- BHP increased lipid peroxidation in a dose-dependent manner. SHCS as well as well-known anti-oxidants GSH and DPPD reduced significantly lipid peroxidation induced by t-BHP. SHCS partially blocked the increase in $^{45}Ca$ uptake induced by t-BHP. In contrast to SHCS, anti-oxidants GSH and DPPD failed to inhibit significantly the t- BHP-induced contraction or $^{45}Ca$ uptake. From the above results, it is suggested that SHCS relaxed t-BHP-induced contraction of rabbit carotid artery independently of its anti-oxidant action, and inhibition of $Ca^{2+}$ influx may contribute to the underlying mechanism.

  • PDF

광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정 (Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • 제16권6호
    • /
    • pp.41-47
    • /
    • 2003
  • 복합재료는 비강성, 비강도가 높고 열팽창 계수가 낮으며 우수한 내열 특성 등 기계적, 열적 특성이 좋아 항공기, 인공위성을 비롯하여 여러 다른 구조물에 폭넓게 사용되고 있다. 하지만, 복합재료를 고온 환경에 사용하기 위해서는 고온 환경에서의 물성에 대한 검증이 필요하다. 본 연구에서는 FBG 센서가 삽입된 T700/Epoxy 복합재료 시편에 대해 온도에 따른 물성을 측정하였다 실험은 열챔버 내에서 수행하였고 온도 범위는 상온, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$이다. 삽입된 광섬유의 예비 시험을 통해, 광섬유 센서의 삽입이 물성값에 미치는 영향을 확인하였다. 시험에는 [0/{0}/0]$_{T}$, [$90_2$/{0}/$90_2$] 와 같은 적층각을 갖는 두 종류의 시편을 사용하였다. 실험 결과로부터 온도에 따른 복합재료의 물성 변화를 성공적으로 측정하였으며 FBG 센서가 고온 환경의 변형률 측정 센서로 매우 적합함을 확인하였다.

나노 측정기를 이용한 연잎효과 규명 (Investigation of the lotus leaf effect using the scanning probe microscopes)

  • 이주희;이동연
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5756-5762
    • /
    • 2015
  • 본 논문에서는 자연에서 영감을 얻은 생체 모방 공학 중의 하나인 연잎 효과에 초점을 맞추었다. 생체 모방 공학은 자연의 시스템을 관찰하여 동식물, 곤충 등의 구조와 기능을 모방하여 공학적으로 활용하는 것이다. 나노 기술의 발전은 생체 모방 공학의 발전도 함께 일으켜왔다. 본 과제에서는 연잎 표면의 소수성과 특징에 대해 살펴본 뒤 나노 측정 장비인 SEM (주사선전자 현미경)과 AFM (원자력간 현미경)을 이용하여 측정 후 비교, 분석하였다. 연잎의 표면에는 수많은 나노 돌기들이 존재하며, 그 작은 돌기들이 소수성을 갖게 하고 표면장력을 극대화 시키는 역할을 한다. 연잎의 표면에서는 물방울이 동그랗게 모여 있는 것을 볼 수 있는데 그것을 연잎 효과라고 하며, 나노 돌기로부터 생성된 효과이다. 이러한 연잎의 표면을 배율 별로 2D와 3D로 측정하여 분석하였다. 또한, 그 결과를 기존의 법칙들에 어떻게 적용되는지 살펴보았으며 나아가 소수성을 판별할 수 있는 새로운 방법에 대해 논의하여 보고자 하였다.

Internal Service Recovery's Influence on Frontline Service Employees' Satisfaction and Loyalty

  • Gong, Taeshik
    • Asia Marketing Journal
    • /
    • 제17권2호
    • /
    • pp.39-62
    • /
    • 2015
  • Relatively little studies have investigated employee recovery from internal service failure, especially from the employees' perspective. When handling customer complaints, employees must not only deal with legitimate customer demands after a service failure, such as providing an apology, rectifying the problem, and offering compensation, but they must also manage illegitimate dysfunctional customers, who may yell, threaten, and even physically harm the employee. These negative experiences can have strong effects, and employees can exhibit higher levels of stress such as burnout and emotional labor, which have been linked to dissatisfaction, tension and anxiety, reduced performance and effectiveness, and a greater propensity to leave the firm, ultimately leading to negative financial consequences for the firm. These conditions result in internal service failure and create the need to recover employees-in other words, internal service recovery. However, little research has examined this issue so far. The purpose of the current study, therefore, is to investigate the relationship between internal service recovery and employee outcomes. A pre-test, post-test between-subjects experimental design was developed. Participants were 166 part-time students who were working full-time. The average age of the participants was 36.74 years, and 57.50% of them were female. The average length of employment was 13 years. Participants were randomly assigned to one of four groups of approximately equal size. Three of the groups were subjected to an experimental situation involving an internal service failure, while one group was not exposed to failure, thereby acting as a control group. This study contributes to the service marketing literature in several ways. First, the study extends service failure and/or recovery research by examining recovery in an employee context. Second, this study attempts to measure internal service recovery and to empirically demonstrate its relationship to employee outcomes. Third, this investigation emphasizes the managerial importance of internal service recovery. For example, understanding the nature of the relationships between internal service recovery and its consequences can improve the effectiveness and efficiency of managers' resource allocation decisions.

Effect of Electrical Muscle Stimulation Training With and Without Superimposed Voluntary Contraction on Rectus Femoris and Vastus Intermedius Thickness and Knee Extension Strength

  • Weon, Young-soo;Kim, Jun-hee;Gwak, Gyeong-tae;Lee, Do-eun;Kwon, Oh-yun
    • 한국전문물리치료학회지
    • /
    • 제29권2호
    • /
    • pp.140-146
    • /
    • 2022
  • Background: The superimposed technique (ST) involves the application of electrical muscle stimulation (EMS) during voluntary muscle action. The physiological effects attributed to each stimulus may be accumulated by the ST. Although various EMS devices for the quadriceps muscle are being marketed to the general public, there is still a lack of research on whether ST training can provide significant advantages for improving quadriceps muscle strength or thickness compared with EMS alone. Objective: To compare the effects of eight weeks of ST and EMS on the thicknesses of the rectus femoris (RF) and vastus intermedius (VI) muscles and knee extension strength. Methods: Thirty healthy subjects were recruited and randomly assigned to either the ST or EMS groups. The participants underwent ST or EMS training for eight weeks. In all participants, the thicknesses of the RF and VI muscles were measured before and after the 8-week intervention by ultrasonography, and quadriceps muscle strength was measured using the Smart KEMA tension sensor (KOREATECH Co., Ltd.). Results: There were significant differences in the pre- and post-intervention thicknesses of the RF and VI muscles as well as the quadriceps muscle strength in both groups (p < 0.05). RF thickness was significantly greater in the ST group (F = 4.294, p = 0.048), but there was no significant difference in VI thickness (F = 0.234, p = 0.632) or knee extension strength (F = 0.775, p = 0.386). Conclusion: EMS can be used to improve quadriceps muscle strength and RF and VI muscle thickness, and ST can be used to improve RF thickness in the context of athletic training and fitness.

Differences in the Effects of a Horticultural Activity Program Depending on the Level of Resilience of College Students

  • Kim, Yong Hyun;Bae, Hwa-Ok;Huh, Moo Ryong
    • 인간식물환경학회지
    • /
    • 제22권3호
    • /
    • pp.255-268
    • /
    • 2019
  • Horticultural therapy, as a kind of complementary alternative therapies using nature as a medium, is an intervention method that can be applied to various subjects by utilizing horticultural activities that anyone can enjoy as a leisure activity. This research defined the resilience of individuals as a personal characteristic, and examined differences in the intervention effect of horticultural activities depending on the level of resilience. The results obtained in this study can be utilized in planning a horticultural activity program and setting the purpose and goals of horticultural activity programs. The subjects of this study were divided into the high resilience experimental group (Group A), the low resilience experimental Group (Group C), the high resilience control group (Group B), and the low resilience control group (Group D). The experiment was conducted in the campus of G University from September to November 2017, and the experimental group participated in the program once per week, a total of 10 sessions. The Korean version of the Connor-Davidson Resilience Scale, autonomic nervous assessment, and the interpersonal relationship change scale were carried out as pre- and post-assessment. Statistical analysis was performed using a non-parametric test. Group A showed statistically significant positive changes in relaxation of physical tension and stability. In conclusion, those with high resilience showed the higher intervention effects of horticultural activities on physical relaxation and stability than those with low resilience. However, there were some possible limitations in this study. Since the number of subjects was small and subjects were limited to college students, it is impossible to generalize the results of this study. Therefore, it is necessary to conduct follow-up studies to address and overcome these limitations.

A new formulation of cracking in concrete structures based on lumped damage mechanics

  • Daniel V.C. Teles;Rafael N. Cunha;Ricardo A. Picon;David L.N.F. Amorim;Yongtao Bai;Sergio P.B. Proenca;Julio Florez-Lopez
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.451-462
    • /
    • 2023
  • Lumped Damage Mechanics (LDM) is a theory proposed in the late eighties, which assumes that structural collapse may be analyzed as a two-phase phenomenon. In the first (pre-localization) stage, energy dissipation is a continuous process and it may be modelled by means of the classic versions of the theory of plasticity or Continuum Damage Mechanics (CDM). The second, post-localization, phase can be modelled assuming that energy dissipation is lumped in zones of zero volume: inelastic hinges, hinge lines or localization surfaces. This paper proposes a new LDM formulation for cracking in concrete structures in tension. It also describes its numerical implementation in conventional finite element programs. The results of three numerical simulations of experimental tests reported in the literature are presented. They correspond to plain and fiber-reinforced concrete specimens. A fourth simulation describes also the experimental results of a new test using the digital image correlation technique. These numerical simulations are also compared with the ones obtained using conventional Cohesive Fracture Mechanics (CFM). It is then shown that LDM conserves the advantages of both, CDM and CFM, while overcoming their drawbacks.