• Title/Summary/Keyword: Pre-set method

Search Result 324, Processing Time 0.027 seconds

Design of Moving Object Query Processing Based on UDF (UDF 기반 이동객체 질의 처리 설계 및 구현)

  • Yoo, Kihyun;Yang, Pyoung Woo;Nam, Kwang Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • Various mobile devices are spreading in recent developments in mobile computing environments. Especially the popularity of mobile devices equipped with GPS has become widespread, and various application services utilizing location information are born. In this paper, we propose a system model for storing and managing the trajectory of moving objects, which is the set of location information of moving objects acquired in continuous time, and the UDF (User-Defined Functions) based trajectory index method which can quickly query the large data set of moving object and the Pre-Materialized table method. Then we compare and evaluate the performance of each method through experiments. Experimental results show that the Pre-Materialized table method is about 1.2 times faster than the UDF based trajectory index method on execution time.

Level Set based Respiration Rate Estimation using Depth Camera (레벨 셋 기반의 깊이 카메라를 이용한 호흡수 측정)

  • Oh, Kyeong Taek;Shin, Cheung Soo;Kim, Jeongmin;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1491-1501
    • /
    • 2017
  • In this paper, we propose a method to measure respiration rate by dividing the respiration related region in depth image using level set method. In the conventional method, the respiration related region was separated using the pre-defined region designated by the user. We separate the respiration related region using level set method combining shape prior knowledge. Median filter and clipping are performed as a preprocessing method for noise reduction in the depth image. As a feasibility test, respiration activity was recorded using depth camera in various environments with arm movements or body movements during breathing. Respiration activity was also measured simultaneously using a chest belt to verify the accuracy of calculated respiration rate. Experimental results show that our proposed method shows good performance for respiration rate estimation in various situation compared with the conventional method.

A Monitoring System for Functional Input Data in Multi-phase Semiconductor Manufacturing Process (다단계 반도체 제조공정에서 함수적 입력 데이터를 위한 모니터링 시스템)

  • Jang, Dong-Yoon;Bae, Suk-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.3
    • /
    • pp.154-163
    • /
    • 2010
  • Process monitoring of output variables affecting final performance have been mainly executed in semiconductor manufacturing process. However, even earlier detection of causes of output variation cannot completely prevent yield loss because a number of wafers after detecting them must be re-processed or cast away. Semiconductor manufacturers have put more attention toward monitoring process inputs to prevent yield loss by early detecting change-point of the process. In the paper, we propose the method to efficiently monitor functional input variables in multi-phase semiconductor manufacturing process. Measured input variables in the multi-phase process tend to be of functional structured form. After data pre-processing for these functional input data, change-point analysis is practiced to the pre-processed data set. If process variation occurs, key variables affecting process variation are selected using contribution plot for monitoring efficiency. To evaluate the propriety of proposed monitoring method, we used real data set in semiconductor manufacturing process. The experiment shows that the proposed method has better performance than previous output monitoring method in terms of fault detection and process monitoring.

Elastic Analysis of Cold Extrusion Die Set with Stress Ring (보강링을 갖는 냉간 압출 금형 세트의 탄성해석)

  • 안성찬;이근안;김수영;임용택
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.355-362
    • /
    • 2002
  • In this study, an axi-symmetric finite element program for elastic analysis of the die set shrink fitted in cold extrusion was developed. The geometrical constraint according to shrink fit was enforced by employing the Lagrange multiplier method. The numerical results for strain and stress distributions in the die set including single and multi stress rings assembled by shrink fit were compared well with the Lame's equation for thick-walled solution available in the literature. To extend the applicability of the analysis program developed, various cases without or with stress ring and with pre-stress applied on stress ring were numerically investigated as well. This numerical approach enables the optimization study to determine optimal dimensions of die set to improve tool life for practical use in industry.

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

Numerical Study on a Thin Film Patterning Process Using Microdroplet Ejection (미세액적의 분사를 이용한 박막 패터닝 공정에 대한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.658-659
    • /
    • 2008
  • Numerical simulation is performed for a microdroplet deposition on the pre-patterned micro-structure. The liquid-air interface is tracked by level set method improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to overcome the patterning error.

  • PDF

A Numerical Study on Patterning Process Including a Self-Alignment Technique of a Microdroplet (미세액적의 자기정렬 기법을 포함한 패터닝 공법에 대한 해석적인 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.28-38
    • /
    • 2009
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The liquid-air interface is tracked by a level-set method, which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip condition at the fluid-solid interface. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

Development of a Pre/Post Processor Program for the Analysis of the Passenger Flow based on Discrete Element Method(DEM) (DEM에 기초한 여객유동 해석을 위한 전/후처리 프로그램 개발)

  • Kim, Chi-Gyeom;Won, Chan-Shik;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.475-480
    • /
    • 2008
  • A pre/post processor program based GUI(Graphic User Interface) by using the MFC and OpenGL library in the Windows OS have been developed for the analysis of the passenger flow. Using this program, users are able to generate and modify the meshes of multi-storied subway station, set all the parameters for the solver, and obtain the results of the simulation such as transient passenger motions and passenger streak lines in 3-dimensional graphic view.

  • PDF

The Method of Virtual Reality-based Surgical Navigation to Reproduce the Surgical Plan in Spinal Fusion Surgery (척추 융합술에서 수술 계획을 재현하기 위한 가상현실 기반 수술 내비게이션 방법)

  • Song, Chanho;Son, Jaebum;Jung, Euisung;Lee, Hoyul;Park, Young-Sang;Jeong, Yoosoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • In this paper, we proposed the method of virtual reality-based surgical navigation to reproduce the pre-planned position and angle of the pedicle screw in spinal fusion surgery. The goal of the proposed method is to quantitatively save the surgical plan by applying a virtual guide coordinate system and reproduce it in the surgical process through virtual reality. In the surgical planning step, the insertion position and angle of the pedicle screw are planned and stored based on the virtual guide coordinate system. To implement the virtual reality-based surgical navigation, a vision tracking system is applied to set the patient coordinate system and paired point-based patient-to-image registration is performed. In the surgical navigation step, the surgical plan is reproduced by quantitatively visualizing the pre-planned insertion position and angle of the pedicle screw using a virtual guide coordinate system. We conducted phantom experiment to verify the error between the surgical plan and the surgical navigation, the experimental result showed that target registration error was average 1.47 ± 0.64 mm when using the proposed method. We believe that our method can be used to accurately reproduce a pre-established surgical plan in spinal fusion surgery.