• Title/Summary/Keyword: Pre-osteoblast

Search Result 26, Processing Time 0.021 seconds

THE EFFECT OF HYALURONIC ACID ON MOUSE CALVARIA PRE-OSTEOBLASTS OSTEOGENESIS IN VITRO (히알루론산이 골 형성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Min;Min, Seung-Ki;Kim, Soo-Nam;You, Yong-Ouk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.216-225
    • /
    • 2002
  • Hyaluronic acid (HA) is an almost essential component of extracellular matrices. Early in embryogenesis mesenchymal cells migrate, proliferate and differentiate, in part, because of the influence of HA. Since the features of embryogenesis are revisited during wound repair, including bone fracture repair, this study was initiated to evaluate whether HA has an effect on calcification and bone formation in an in vitro system of osteogenesis. Mouse calvaria Pre-osteoblast (MC3T3-E1) cells were cultured in ${\alpha}-MEM$ medium with microorganism-derivative hyaluronic acid that was produced by Strep. zooepidemicus which of molecular weight was 3 million units. The dosages were categorized in each 0.5, 1.0 and 2.0 mg/ml concentration experimental groups. After 2 and 4 days cultures in expeirmental and control groups, the tendency of cell proliferation, MTT assay, protein synthesis ability, collagen synthesis and alkaline phosphatase activity were analysed and bone nodule formation capacity were measured with Alizarin Red S stain after 29 days cultures. The cell proliferation was increased in time, especially the group of 0.5 and 1.0 mg/ml concentration of HA were showed prominent cell proliferation. After 2 and 4 days culture, experimental groups in general were greater cell activity in MTT assay. The protein synthesis was increased in all experimental groups compared to control group, especially most prominent in 1.0 mg/ml concentration group. The collagen synthesis capacity were increased in HA experimental groups, especially prominent in 1.0 mg/ml group and the activity of alkaline phosphatase were increased, especially also prominent in 1.0 mg/ml group, compared to control group. Above these, the activity of mouse carvarial pre-osteoblast cells was showed greater bone osteogenesis activity in all applied HA experimental group, especially group of 1.0 mg/ml concentration of HA.

Fabrication of TiO2 Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration (골융합을 위한 Vapor-Liquid-Solid 법을 이용한 TiO2 나노와이어의 합성)

  • Yun, Young-Sik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.204-210
    • /
    • 2013
  • In order to improve osseointegration for biomedical implants, it is crucial to understand the interactions between nanostructured surfaces and cells. In this study, $TiO_2$ nanowires were prepared via Vapor-Liquid-Solid (VLS) process with Sn as a metal catalyst in the tube furnace. Nanowires were grown with $N_2$ heat treatment with their size controlled by the agglomeration of Sn layers in various thicknesses. MC3T3-E1 (pre-osteoblast) were cultured on the $TiO_2$ nanowires for a week. Preliminary results of the cell culture showed that the cells adhere well on the $TiO_2$ nanowires.

The Effects of Deer(Cervus nippon) Antler Extracts on Differentiation of MC3T3 Cells (녹용 추출물에 의한 MC3T3세포의 분화 촉진)

  • Yoo, Yun-Jung;Lee, Hyun-Jung;Lim, So-hyung;Kang, Jung-Hwa;Lee, Eun-Hui;Ohk, Seung-Ho;Choi, Bong-Kyu;Jhon, Gil-Ja
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.885-894
    • /
    • 2000
  • Deer antler has been widely prescribed in Chinese and Korean pharmacology. Although there have been several reports concerning the effects of deer antler, such as anti-aging action, anti-inflammatory activity, antifungal action and regulatory activity of the level of glucose, the effect on bone has not determined yet. The purpose of this study was to examine the effect of deer antler on osteoblast differentiation. Hexane extract(CN-H) and chloroform extract(CN-C) were acquired from deer antler(Cervus nippon) and MC3T3-E1 pre-osteoblasts were cultured in the presence or absence of each extract. Osteoblast differentiation was estimated with the formation of mineralized nodules and the mRNA expression of alkaline phosphatase(ALP), osteocalcin(OC) and bone sialoprotein(BSP) which are markers of osteoblast differentiation. Non-treated group did not show mineralized nodule. CN-C or CN-H-treated group showed minerlaized nodules in 16 days. In northern blot analysis, CN-C or CN-H-treated group showed the elevated expression of ALP, BSP and OC in 16 days. These results suggest the possibility to develop deer antler as a bone regenerative agent in periodontal therapy by showing the stimulating activity of deer antler on differentiation of osteoblast.

  • PDF

Analysis of osteogenic potential on 3mol% yttria-stabilized tetragonal zirconia polycrystals and two different niobium oxide containing zirconia ceramics

  • Hein, Aung Thu;Cho, Young-Dan;Jo, Ye-Hyeon;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 2018
  • PURPOSE. This study was performed to evaluate the osteogenic potential of 3mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) and niobium oxide containing Y-TZPs with specific ratios, new (Y,Nb)-TZPs, namely YN4533 and YN4533/Al20 discs. MATERIALS AND METHODS. 3Y-TZP, YN4533 and YN4533/Al20 discs (15 mm diameter and 1 mm thickness) were prepared and their average surface roughness ($R_a$) and surface topography were analyzed using 3-D confocal laser microscope (CLSM) and scanning electron microscope (SEM). Mouse pre-osteoblast MC3T3-E1 cells were seeded onto all zirconia discs and evaluated with regard to cell attachment and morphology by (CLSM), cell proliferation by PicoGreen assay, and cell differentiation by Reverse-Transcription PCR and Quantitative Real-Time PCR, and alkaline phosphatase (Alp) staining. RESULTS. The cellular morphology of MC3T3-E1 pre-osteoblasts was more stretched on a smooth surface than on a rough surface, regardless of the material. Cellular proliferation was higher on smooth surfaces, but there were no significant differences between 3Y-TZP, YN4533, and YN4533/Al20. Osteoblast differentiation patterns on YN4533 and YN4533/Al20 were similar to or slightly higher than seen in 3Y-TZP. Although there were no significant differences in bone marker gene expression (alkaline phosphatase and osteocalcin), Alp staining indicated better osteoblast differentiation on YN4533 and YN4533/Al20 compared to 3Y-TZP. CONCLUSION. Based on these results, niobium oxide containing Y-TZPs have comparable osteogenic potential to 3Y-TZP and are expected to be suitable alternative ceramics dental implant materials to titanium for aesthetically important areas.

The Effect of Intermittent Compressive Loading to Growth of Pre-osteoblast Cells (간헐적인 압축하중이 조골세포주 성장에 미치는 영향)

  • Choi, Sung-Kyu;Park, Jeong-Hun;Lee, Seung-Jae;Lee, In-Hwan;Kang, Sang-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Recently, it has been reported that mechanical stimulation takes a role in improving cell growth. Also, became generally known that skeletal system as bone or cartilage tissues take influence of compression loading. In this study, we fabricated a custom-made bioreactor and analyzed that conditions of compressive loading would influence cell growth. To compare the effect of intermittent compressive loading on cell-encapsulated agarose scaffold, we cultured preosteoblast cell (MC3T3-E1 cells) statically and dynamically. And dynamic culture conditions were produced by changing parameters such as the iteration time and interval delay time. Also, cellencapsulated agarose scaffold were subjected to 10 % dynamic compressive strain at 1㎐ frequency for 7 days. After cell culture, cell proliferation was assessed with PI stain assay for fluorescence images and flow cytometry (FACS).

Anti-osteoporotic Effects of Unripe Fructus of Rubus coreanus Miquel in Osteoblastic and Osteoclastic Cells

  • Kim, Hyo Jin;Sim, Dong-Soo;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.593-600
    • /
    • 2014
  • Osteoporosis is a progressive bone disease characterized by low bone mass which is caused by disturbance in the balance between the activities of osteoblasts and osteoclasts. Postmenopausal osteoporosis is one of the most common disorders in women after menopause, which is linked to an estrogen deficiency and characterized by an excessive loss of trabecular bone. Rubus coreanus has been used for their various pharmacological properties in Asia as a traditional medicine. To investigate the effect of unripe fruits of R. coreanus 30% ethanol extract (RCE) on osteoblast-like cells (MG63) differentiation, we examined the effects of RCE on in vitro osteoblastic differentiation markers, alkaline phosphatase (ALP) activity and receptor activator of nuclear factor ${\kappa}$-B ligand (RANKL) and osteoprotegerin (OPG) expression. The high concentration (50 and $100{\mu}g/mL$) of RCE markedly increased ALP activity, whereas decreased the RANKL/OPG. We also investigated the effect of RCE on M-CSF plus RANKL-induced differentiation of pre-osteoclast cells (RAW 264.7). RCE treatment remarkably inhibited M-CSF/RANKL-induced formation of osteoclast-like multinuclear cells from RAW 264.7 cells. Moreover, the inhibitory effect of RCE was reduced by selective estrogen receptor-${\alpha}$ antagonist. Our research suggests that suggested that unripe fruits of R. coreanus may act beneficial effects on bone mass by regulating both osteoblast and osteoclast.

The Influence of Bioactive Inorganic Materials on Osteopontin Expression in Rat Calvarial Osteoblast Culture

  • Mun, Byung-Bae;Jung, Kyoung-Hwa;Chai, Young-Gyu;Kim, Ho-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.652-656
    • /
    • 2007
  • Hydroxyapatite [Ca10(PO4)6(OH)2, HAp] and titanium(Ti) metal are known to be excellent materials with high affinities for natural bone through the apatite. Tricalcium phosphate [Ca3(PO4)2, TCP] is a promising alternative material because it is similar to HAp in its physical properties and biocompatibility. To examine the influence of hydroxyapatite, tricalcium phosphate, pure titanium and pre-treated titanium on osteopontin expression in osteoblasts, RNA was extracted from proliferated and cultured osteoblast cells and OPN mRNA expression was observed by RT-PCR.

Effects of Astragalus Membranaceus, Innamomum Cassia, Phellodendron Amurensis(BHH10) on MC3T3-E1 Cells Proliferation, Differntiation and Bone Mineralized Formation (MC3T3-E1 세포주에서 황기.계지.황백 처방(BHH10)의 골형성 촉진 효능 연구)

  • Lee, Mi Lim;Huh, Jeong Eun;Nam, Dong Woo;Seon, Jong In;Kang, Jung Won;Kim, Sung Hoon;Choi, Do Young;Lee, Jae Dong
    • Journal of Acupuncture Research
    • /
    • v.29 no.6
    • /
    • pp.11-21
    • /
    • 2012
  • Objectives : BHH10 is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify BHH10 extract induces osteogenic activity in human osteoblast-like MC3T3-E1 cells. Methods : MC3T3-E1, pre-osteoblast cell line, were treated with BHH10 of various concentrations($0.1{\mu}g/mL$, $1{\mu}g/mL$, $10{\mu}g/mL$). And then, the effect of BHH10 on osteoblast differentiation was examined by alkaline phosphatase(ALP) activity, von Kossa staining and RT-PCR for osteoblast differentiation markers such as osteocalcin(OCN), osteopontin(OPN). Results : BHH10 had dose-dependent effect on the viability of osteoblastic cells, and dose-dependently increased alkaline phosphatase(ALP) activity. BHH10 markedly increased mRNA expression for OCN, OPN in MC3T3-E1 cells. Also, BHH10 significantly induced mineralization in the culture of MC3T3-E1 cells. Conclusions : In conclusion, these results propose that BHH10 can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.

The Effect of Guibi-tang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation (귀비탕(歸脾湯)이 파골세포 분화와 조골세포 활성에 미치는 영향)

  • Choi, Kyung-Hee;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.3
    • /
    • pp.12-27
    • /
    • 2014
  • Objectives: This study was performed to evaluate the effect of Guibi-tang water extract (GB) on osteoporosis. Methods: We examined the effect of GB on osteoclast differentiation using murine pre-osteoclastic RAW 264.7 cells treated with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect of GB on osteoclast was measured by counting TRAP (+) multinucleated cells and measuring TRAP activity. The mRNA expressions of osteoclastogenesis-related genes (Cathepsin K, MMP-9, TRAP, NFATc1, MITF, TNF-${\alpha}$, IL-6, COX-2) were measured by real-time PCR. We examined the effect of GB on osteoblast proliferation, ALP activity, bone matrix protein synthesis and collagen synthesis using murine calvarial cell. Results: GB decreased the number of TRAP (+) multinucleated cells and inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. GB decreased the expression of genes related osteoclastogenesis such as Cathepsin K, MMP-9, TRAP, NFATc1, MITF, COX-2 in RANKL-stimulated RAW 264.7 cell. But GB did not decrease the expression of iNOS and increased the expression of TNF-${\alpha}$, IL-6 in RANKL-stimulated RAW 264.7 cell. These genes (iNOS, TNF-${\alpha}$, IL-6) are thought to be related with the inflammatory bone destruction. GB increased cell proliferation of rat calvarial cell and also increased ALP activity in rat calvarial cell. GB did not increase bone matrix protein synthesis but increased collagen synthesis in rat calvarial cell. Conclusions: This study suggests that GB may be effective in treating osteoporosis by inhibiting osteoclast differentiation and its related gene expression and by increasing osteoblast proliferation.

Comparative evaluation of the biological properties of fibrin for bone regeneration

  • Oh, Joung-Hwan;Kim, Hye-Jin;Kim, Tae-Il;Woo, Kyung Mi
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.110-114
    • /
    • 2014
  • Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.