• Title/Summary/Keyword: Pre-feasibility

Search Result 335, Processing Time 0.028 seconds

Evaluation of RO Process Feasibility and Membrane Fouling for Wastewater Reuse (하수처리수 재이용을 위한 RO 공정의 타당성 및 막오염 평가)

  • Hong, Keewoong;Lee, Sangyoup;Kim, Changwoo;Boo, Chanhee;Park, Myunggyun;An, Hochul;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.289-296
    • /
    • 2010
  • The purpose of this study is to evaluate various pre-treatment methods and proprieties of water quality for wastewater reuse using reverse osmosis (RO) processes. Secondary effluents were sampled from wastewater treatment plants and lab scale pre-treatments and RO filtration test were conducted systematically. Specifically, different types of pre-treatments, such as coagulation, microfiltration and ultrafiltration, were employed to evaluate the removal efficiency of particle and organic matters which may affect the membrane fouling rate. RO process was later added to eliminate trace amounts of remaining organic matters and salt from the raw water for wastewater reclamation. The permeate through the RO process satisfied water quality regulations for industrial water uses. The experimental results showed that the initial fouling tendency differed not only by the feed water properties but also by the membrane characteristics. Membrane fouling was greater for the membranes with large surface roughness, regardless of the hydrophobicity and zeta potentials. Thus both careful consideration of pre-treatment options and proper selection of RO membrane are of paramount importance for an efficient operation of wastewater treatment.

Analytical methods for determining the cable configuration and construction parameters of a suspension bridge

  • Zhang, Wen-ming;Tian, Gen-min;Yang, Chao-yu;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.603-625
    • /
    • 2019
  • Main cable configurations under final dead load and in the unloaded state and critical construction parameters (e.g. unstrained cable length, unstrained hanger lengths, and pre-offsets for tower saddles and splay saddles) are the core considerations in the design and construction control of a suspension bridge. For the purpose of accurate calculations, it is necessary to take into account the effects of cable strands over the anchor spans, arc-shaped saddle top, and tower top pre-uplift. In this paper, a method for calculating the cable configuration under final dead load over a main span, two side spans, and two anchor spans, coordinates of tangent points, and unstrained cable length are firstly developed using conditions for mechanical equilibrium and geometric relationships. Hanger tensile forces and unstrained hanger lengths are calculated by iteratively solving the equations governing hanger tensile forces and the cable configuration, which gives careful consideration to the effect of hanger weight. Next, equations for calculating the cable configuration in the unloaded state and pre-offsets of saddles are derived from the cable configuration under final dead load and the conditions for unstrained cable length to be conserved. The equations for the main span, two side spans and two anchor spans are then solved simultaneously. In the proposed methods, coupled nonlinear equations are solved by turning them into an unconstrained optimization problem, making the procedure simplified. The feasibility and validity of the proposed methods are demonstrated through a numerical example.

Development of a Screw-Crane System for Pre-Lifting the Sternal Depression in Pectus Excavatum Repair: A Test of Mechanical Properties for the Feasibility of a New Concept

  • Park, Hyung Joo;Rim, Gongmin
    • Journal of Chest Surgery
    • /
    • v.54 no.3
    • /
    • pp.186-190
    • /
    • 2021
  • Background: Pre-lifting of the sternum marked a major turning point in pectus excavatum repair. The author developed the crane technique in 2002 and successfully applied it to more than 2,000 cases using sternal wire stitching. However, blind sternal suturing limited the use of the wire-stitch crane. We propose a novel screw for sternal lifting as a new tool for the crane technique. Methods: We developed a screw system strong enough to withstand the pressure needed for sternum lifting. The screw was designed to have a broader thread to hold the bony tissue securely. The screw's sustaining power was tested using the torsion, driving torque, and axial pull-out tests in a polyurethane block and ex-vivo porcine sternum. Results: The screws were easily driven into the sternum, and the head of the screw was connectable to the table-mounted retractor. In the torsion test, the 2° offset torsional yield was 4.53 N·m (reference value, 1 N·m). In the polyurethane block driving torque test, the maximum torque was 0.98 N·m (reference value, 0.70 N·m). The axial pull-out test was 446 N (reference value, 100 N). The maximum pull-out resistance in the ex-vivo porcine sternum model was 1,516 N. Conclusion: The screw crane was strong enough to sustain the chest wall weight to be lifted. Thus, the screws could effectively replace the sternal wire stitching in crane pre-lifting of the sternum. We expect that application of the screw-crane will be easy and that it will improve the safety and success rate of pectus repair surgery.

Feasibility Appraisal and Proposal of a Pile Driving Formula for Domestic Pre-bored Pile Management (국내 매입 말뚝 관리를 위한 항타공식 활용 가능성 평가 및 제안에 관한 연구)

  • Kim, Gunwoong;Seo, Seunghwan;Kim, Juhyong;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.71-84
    • /
    • 2023
  • In accordance with Korean structural foundation design standards, dynamic or static load tests are mandated for 1 to 3% of total piles. The construction quality of the remaining 97% to 99% of piles is determined through penetration measurements. This study aims to enhance the quality control of the majority of piles by adopting a pile driving formula that considers both penetration and hammer energy. The current challenge lies in adapting existing overseas driving formulas to the domestic site conditions, characterized by shallow weathered or soft rocks, and the prevalent use of pre-bored piles. To address this, the Modified Gates formula was refined using domestic dynamic load data, thereby improving its applicability to pile management. Despite employing fewer variables, the proposed formula demonstrates a comparable accuracy to dynamic loading tests in predicting the bearing capacity of pre-bored piles. Consequently, this formula holds promise for practical use in future pile quality management.

Feasibility Study on Thermal Power Plant Condenser Heat Recovery for District Heating and Fuel Line Preheating (발전소 복수기 배열회수의 지역난방 및 연료라인 예열용 활용타당성 검토)

  • Jung, Hoon;Hwang, Gwang-Won
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.40-48
    • /
    • 2009
  • Recovered heat has been considered as a renewable energy in Europe since 2008 because its great effect on energy saving and carbon decreasing in plant process. Energy saving and decreasing green gas are critical issue today, so various technologies to save energy and decrease carbon dioxide in plant process have been applied to many industrial area. In this paper, the feasibility of condenser heat recovery by heat pump in power plant for district heating and fuel line preheating were reviewed by verifying energy (heat) balance and mass balance of power plant model. Some ways to compose proper system to recover heat of condenser are suggested and their possibilities are also reviewed. Limitations on heat recovery in power plant are also reviewed. The results are verified by calculating input/output energy based on actual performance test data of Taean Thermal Power Plant in Korea. There is noticeable improvement of plant performance in some cases which demand low temperature (<100 C) heat like distrcit heating, fuel line heating, and so forth.

  • PDF

Review on the Pertinent Discount Rate for the Public Investment Project (공공투자사업(公共投資事業)의 적정(適正) 할인율(割引率) 검토(檢討)에 관(關)한 연구(硏究))

  • Park, Jae Keun;Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.89-101
    • /
    • 2003
  • For the pre-feasibility study and project evaluation, the discount rate or cutoff rate should be given by the government authority. To get the Benefit/Cost Ratio, NPV(Net Present Value) and IRR(Internal Rate of Return) of the public investment projects, the pertinent and realistic discount rate should be determined to be suitable to the present time period. The cut-off rates in Korea were equivalent to 15% in 1970's, 10% in 1980's and 8% in 1990's. The prevailing rate of discount as 8% is considered not to be suitable for the 2000's public project appraisal considering the present interest rates on deposit and national bonds. To determine the socio-economic feasibility of the public projects, the IRR should be bigger than the present cutoff rate. When we still use the high old rate of discount, the analytical results of project appraisal will show always economically unfeasible. Therefore the new rate of discount suitable for present time should be determined by the government. The public projects to be implemented in 2000 year onward are recommended to be adapted 5% of cutoff rate for the project appraisal and evaluation according to the results of reviewing the tendency of discount rates and market rates of interest in Korea.

  • PDF

Pre-feasibility Study in Mongolia Tavan Tolgoi Coal Bed Methane (Tavan Tolgoi Coal Bed Methane에 대한 몽골에서의 타당성 조사)

  • CHO, WONJUN;YU, HYEJIN;LEE, JESEOL;LEE, HYUN CHAN;JU, WOO SUNG;LIM, OCKTAEK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.124-129
    • /
    • 2018
  • Methane is the cleanest fuel and supplies by many distributed type: liquefaction natural gas (LNG), compressed natural gas (CNG), and pipeline natural gas (PNG). Natural gas is mainly composed by methane and has been discovered in the oil and gas fields. Coal bed methane (CBM) is also one of them which reserved in coalbed. This significant new energy sources has emerge to convert an energy source, hydrogen and hydrogen-driven chemicals. For this CBM, this paper was written to analyze the geological analysis and reserves in Mongolian Tavan Tolgoi CBM coal mine and to examine the application field. This paper is mainly a preliminary feasibility report analyzing the business of Tavan Tolgoi CBM and its exploitable gas.

Development of Liquid Metal Strain Gauge for Measuring WT Blade's Deformation (풍력발전기 블레이드 변형 측정을 위한 액체금속 스트레인 게이지 개발)

  • Park, In Kyum;Seo, Youngho;Kim, Byeong Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.307-314
    • /
    • 2015
  • In this paper, the embedding type novel liquid metal strain gauge was developed for measuring the deformation of wind turbine blades. In general, the conventional methods for the SHM have many disadvantages such as frequency distortion in FBG sensors, the low gauge factor and mechanical failures in strain gauges and extremely sophisticated filtering in AE sensors. However, the liquid metal filled in a pre-confined micro channel shows dramatic characteristics such as high sensitivity, flexibility and robustnes! s to environment. To adopt such a high feasibility of the liquid metal in flexible sensor applications, the EGaIn was introduced to make flexible liquid metal strain gauges for the SHM. A micro channeled flexible film fabricated by the several MEMS processes and the PDMS replication was filled with EGaIn and wire-connected. Lots of experiments were conducted to investigate the performance of the developed strain gauges and verify the feasibility to the actual wind turbine blades health monitoring.

Feasibility study on a stabilization method based on full spectrum reallocation for spectra having non-identical momentum features

  • Kilyoung Ko ;Wonku Kim ;Hyunwoong Choi;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2432-2437
    • /
    • 2023
  • Methodology for suppressing or recovering the distorted spectra, which may occur due to mutual non-uniformity and nonlinear response when a multi-detector is simultaneously operated for gamma spectroscopy, is presented with respect to its applicability to stabilization of spectra having the non-identical feature using modified full spectrum reallocation method. The modified full-spectrum reallocation method is extended to provide multiple coefficients that describe the gain drift for multi-division of the spectrum and they were incorporated into an optimization process utilizing a random sampling algorithm. Significant performance improvements were observed with the use of multiple coefficients for solving partial peak dislocation. In this study, our achievements to confirm the stabilization of spectrum having differences in moments and modify the full spectrum reallocation method provide the feasibility of the method and ways to minimize the implication of the non-linear responses normally associated with inherent characteristics of the detector system. We believe that this study will not only simplify the calibration process by using an identical response curve but will also contribute to simplifying data pre-processing for various studies as all spectra can be stabilized with identical channel widths and numbers.

Deep Learning Based Radiographic Classification of Morphology and Severity of Peri-implantitis Bone Defects: A Preliminary Pilot Study

  • Jae-Hong Lee;Jeong-Ho Yun
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.156-163
    • /
    • 2023
  • Purpose: The aim of this study was to evaluate the feasibility of deep learning techniques to classify the morphology and severity of peri-implantitis bone defects based on periapical radiographs. Materials and Methods: Based on a pre-trained and fine-tuned ResNet-50 deep learning algorithm, the morphology and severity of peri-implantitis bone defects on periapical radiographs were classified into six groups (class I/II and slight/moderate/severe). Accuracy, precision, recall, and F1 scores were calculated to measure accuracy. Result: A total of 971 dental images were included in this study. Deep-learning-based classification achieved an accuracy of 86.0% with precision, recall, and F1 score values of 84.45%, 81.22%, and 82.80%, respectively. Class II and moderate groups had the highest F1 scores (92.23%), whereas class I and severe groups had the lowest F1 scores (69.33%). Conclusion: The artificial intelligence-based deep learning technique is promising for classifying the morphology and severity of peri-implantitis. However, further studies are required to validate their feasibility in clinical practice.