• Title/Summary/Keyword: Pre-equilibrium

Search Result 131, Processing Time 0.026 seconds

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Acceleratory Action of Ginseng Glycosides on the Recovery Heart Rate after Strenuous Exercise in Men and Women (격심한 운동후 심장박동수에 미치는 인삼 총배당체의 회복 촉진작용)

  • Lee, Jae-Kon;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.79-90
    • /
    • 1974
  • In 24 men and 12 women recovery of heart rate after strenuous exercise was observed before and after administration of total ginseng glycosides. In men 100 mg of ginseng glycosides were given twice with a 3 hour interval on the day of treadmill test and in women two more administrations of ginseng glycosides were added on the day before the exercise test. The action of ginseng glycosides was interpreted as an adaptogen, i.e., to enhance the recovery to the physiological equilibrium from the displace4 state. Recovery of heart rate to the pre-exercise state was observed for 20 minutes after strenuous exercise of 2 minutes duration on a treadmill (8 km/hr, 15% grade). In men the recovery of heart rate was enhanced$(P<.2{\sim}.4)$ after ginseng glycosides administration. In women the acceleration of recovery heart rate was highly significant $(P<.01{\sim}.05)$ after ginseng glycosides administration. In men and women recovery heart rate at 3 minute of recovery period after ginseng glycosides equaled to the value at 6 minute of recovery period before ginseng administration.

  • PDF

Validation of RELAP5 MOD3.3 code for Hybrid-SIT against SET and IET experimental data

  • Yoon, Ho Joon;Al Naqbi, Waleed;Al-Yahia, Omar S.;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1926-1938
    • /
    • 2020
  • We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code predicts the physical phenomena in terms of the equilibrium time, stratification, condensation against Separate Effect Test (SET) data. We also conducted the validation of RELAP5 code against Integrated Effect Test (IET) experimental data produced by the ATLAS facility. We followed conventional approach for code validation of IET data, which are pre-test and post-test calculation. RELAP5 code shows substantial difference with changing number of nodes. The increase of the number of nodes tends to reduce the condensation rate at the interface between liquid and vapor inside the hybrid SIT. The environmental heat loss also contributes to the large discrepancy between the simulation results of RELAP5 and the experimental data.

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Experimental analyses of dynamical systems involving shape memory alloys

  • Enemark, Soren;Savi, Marcelo A.;Santos, Ilmar F.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1521-1542
    • /
    • 2015
  • The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA springs are incorporated in a dynamical system that consists of a one degree of freedom oscillator connected to a linear spring and a mass, which is also connected to the SMA spring. Two types of springs are investigated defining two distinct systems: a pseudoelastic and a shape memory system. The characterisation of the springs is evaluated by considering differential calorimetry scanning tests and also force-displacement tests at different temperatures. Free and forced vibration experiments are made in order to investigate the dynamical behaviour of the systems. For both systems, it is observed the capability of changing the equilibrium position due to phase transformations leading to hysteretic behaviour, or due to temperature changes which also induce phase transformations and therefore, change in stiffness. Both situations are investigated by promoting temperature changes and also pre-tension of the springs. This article shows several experimental tests that allow one to obtain a general comprehension of the dynamical behaviour of SMA systems. Results show the general thermo-mechanical behaviour of SMA dynamical systems and the obtained conclusions can be applied in distinct situations as in rotor-bearing systems.

The relationship between carbon dioxide, crop and food production index in Ghana: By estimating the long-run elasticities and variance decomposition

  • Sarkodie, Samuel Asumadu;Owusu, Phebe Asantewaa
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2017
  • The study estimated the relationship between carbon dioxide, crop and livestock production index in Ghana: Estimating the long-run elasticities and variance decomposition by employing a time series data spanning from 1960-2013 using both fit regression and ARDL models. There was evidence of a long-run equilibrium relationship between carbon dioxide emissions, crop production index and livestock production index. Evidence from the study shows that a 1% increase in crop production index will increase carbon dioxide emissions by 0.52%, while a 1% increase in livestock production index will increase carbon dioxide emissions by 0.81% in the long-run. There was evidence of a bidirectional causality between a crop production index and carbon dioxide emissions and a unidirectional causality exists from livestock production index to carbon dioxide emissions. Evidence from the variance decomposition shows that 37% of future fluctuations in carbon dioxide emissions are due to shocks in the crop production index while 18% of future fluctuations in carbon dioxide emissions are due to shocks in the livestock production index. Efforts towards reducing pre-production, production, transportation, processing and post-harvest losses are essential to reducing food wastage which affects Ghana's carbon footprint.

Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders (축대칭 실린더형상 주위 부분공동 유동의 전산해석)

  • Kim, Bong-Su;Lee, Byung-Woo;Park, Warn-Gyu;Jung, Chul-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

A Comparison of the Form-Finding Method of Tensegrity Structures (텐세그리티 구조물의 형상탐색 기법 비교)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • A tensegrity structure consists of a set of continuous cables in tension and a set of discontinuous struts in compression. The tensegrity structure can be classified into self-stressed and pre-stressed pin-jointed structure. A key step in the design of tensegrity structures is the determination of their equilibrium configuration, known as form-finding. In this paper, three effective methods are presented for form-finding of tensegrity structures. After performing form-finding process, a set of force density and corresponding topology results can be obtained. Then the force density method combined with a genetic algorithm is adopted to uniquely define a single integral feasible set of force densities. Numerical examples are presented that demonstrate the excellent performance of the algorithms.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.