• Title/Summary/Keyword: Pre-curing

Search Result 105, Processing Time 0.018 seconds

Durability Assessment of High Strength Concrete with High Volume Mineral Admixture (다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가)

  • Baek, Chul-Woo;Kim, Hoon-Sang;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2015
  • The purpose of this study was to assess the durability of high-strength concrete with high volume mineral admixture (HVMAC) derived from previous studies within ternary blended concrete (TBC) and normal concrete (NC). Four durability evaluation types such as chloride penetration resistance, freezing and thawing resistance, carbonation resistance in two pre-treatment conditions, and sulfuric acid and sulfate resistance using 5% sulfuric acid ($H_2SO_4$), 10% sodium sulfate ($Na_2SO_4$), and 10% magnesium sulfate ($MgSO_4$) solution were selected and performed in this study. HVMAC showed the excellent chloride penetration resistance in any age and the freezing and thawing durability close to 100%. In addition, HVMAC affected more reduction in carbonation resistance than TBC. When the curing time was increased, to create a concrete internal organization densely improved resistance to carbonation. HVMAC also showed the most superior in sulfuric acid and sulfate resistance. As the reduction of calcium hydroxide and $C_3A$ to apply a large amount of admixture reduced the swelling and cracking of concrete, the strength reduction and mass change of concrete was found to be small indicated.

A study on increasing the water holding capacity of retorted beef for texture softening by pre-treatment (레토르트 쇠고기의 텍스처 연화를 위한 보수력 향상에 관한 전처리 방법 연구)

  • Choi, Jun-Bong;Chung, Myong-Soo;Cho, Won-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.565-568
    • /
    • 2016
  • This study was conducted to soften the tough texture of retorted beef in storage by increasing the water holding capacity (WHC) after pretreatment involving soaking and blanching in a phosphate solution. The yield of pretreated beef, based on weight as an indirect indicator of WHC, soaked in 0.35% (w/w) complex phosphates for 1 h, increased by 5-10%, in contrast to the untreated control in which the rib and shank was heated at $100^{\circ}C$ for 5-40 min. Additionally, strength of mechanical toughness in the fore rump and rib after phosphate curing at $115^{\circ}C$ for 30 min and blanching at $100^{\circ}C$ for 2 min were significantly decreased to 1.3 and $1.4kg_f$ (p<0.05) as compared to 2.0 and $1.8kg_f$ in the control, respectively. During storage of retorted beef for 30 days at $10^{\circ}C$, rib and shank pretreated with 0.35% complex phosphates exhibited a highly soft texture as compared to that of untreated beef. The softening of pretreated beef was based on the increased WHC due to complex phosphates.

Synthesis of Novel Prepolymers Containing No Bisphenol A and Preparation of Organic Matrices for Dental Applications (비스페놀 A를 함유하지 않은 치과용 신규 프리폴리머의 합성 및 유기 매트릭스의 제조)

  • Son, Jun-Sik;Lee, Ki-Baek;Park, Kwi-Deok;Kim, Jae-Jin;Ahn, Kwang-Duk;Kim, Jung-Hyun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.538-544
    • /
    • 2006
  • Two kinds of novel bifunctional methacrylated prepolymers (170-2MA and 631-2MA) which have similar structure with 2,2-bis[4- (2'-hynroxy-3'-methacryloyloxypropoxy)phenyl] propane (Bis-GMA) was synthesized for dental applications as an alternative to Bis-GMA containing bisphenol A that is doubtful as an endocrine disrupter. The organic matrices were prepared by mixing a diluent and/or a monomer with the synthesized methacrylated prepolymers. The yield, viscosity, and chemical structures of the prepolymers and the physical and methanical properties of the organic matrices were evaluated. The yields of the prepolymers synthesized through a ring-opening reaction of epoxy compound and methacrylic acid were above 90% and the viscosities of the prepolymers were much lower than that of the Bis-GMA control. From the results of $^1H-NMR$ and FTIR analyses, the chemical structures of the prepolymers were similar to that of Bis-GMA. In addition, the curing time, poly-merization shrinkage, photoconversion, polymerization depth, and compressive strength of the organic matrices formulated with 170-2MA and 631-2MA prepolymers exhibited comparable to or better than those of the existing Bis-GMA-based one. These results suggest that the novel methacrylated prepolymers which have no endocrine disrupter can be an alternative to Bis-GMA and be applicable to dental polymer materials.

Study on Adhesive Strength of Polymer Modified Cement Mortar for Maintenance in Concrete Structure (콘크리트 구조물 보수용 폴리머시멘트 모르타르의 부착강도 특성에 관한 연구)

  • Park, Sang-Soon;Kim, Jung-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • Polymer-modified cement mortar(PCM) has been widely used for strengthening of the concrete structures due to its excellent physical properties such as high strength and durability. Adhesive strength or behavior, on the other hands, between PCM and concrete is very important in strengthening the concrete member using PCM. Therefore the adhesive failure mechanism between PCM and concrete should be fully verified and understood. This study was performed to evaluate adhesive strength of PCM to the concrete by the direct pull-out test. In the direct pull-out tests, the adhesive strength under the various pre-treatment conditions such as immersion, thunder shower, freezing and thawing are evaluated. Also, the field direct pull-out test are performed to investigate the adhesive strength of mock-up test specimens. In the results of the test, the adhesive strength value by field test are lower than those of the standard curing condition. From these comparison and investigation, field test result was similar with the thunder shower test result. The results of the test was used to evaluate the korean industrial standard of polymer modified cement mortars for maintenance in concrete.

The effect of reinforcing methods on fracture strength of composite inlay bridge (강화재의 사용 방법이 복합 레진 인레이 브릿지의 파괴 강도에 미치는 영향)

  • Byun, Chang-Won;Park, Sang-Hyuk;Sang-Jin, Park;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2007
  • The purpose of this study is to evaluate the effects of surface treatment and composition of reinforcement material on fracture strength of fiber reinforced composite inlay bridges. The materials used for this study were I-beam, U-beam TESCERA ATL system and ONE STEP(Bisco, IL, USA). Two kinds of surface treatments were used; the silane and the sandblast. The specimens were divided into 11 groups through the composition of reinforcing materials and the surface treatments. On the dentiform, supposing the missing of Maxillary second pre-molar and indirect composite inlay bridge cavities on adjacent first pre-molar disto-occlusal cavity, first molar mesio-occlusal cavity was prepared with conventional high-speed inlay bur. The reinforcing materials were placed on the proximal box space and build up the composite inlay bridge consequently. After the curing, specimen was set on the testing die with ZPC. Flexural force was applied with universal testing machine (EZ-tester; Shimadzu, Japan). at a cross-head speed of 1 mm/min until initial crack occurred. The data was analyzed using one-way ANOVA/Scheffes post-hoc test at 95% significance level. Groups using I-beam showed the highest fracture strengths (p<0.05) and there were no significant differences between each surface treatment (p>0.05) Most of the specimens in groups that used reinforcing material showed delamination. 1. The use of I-beam represented highest fracture strengths (p<0.05) 2. In groups only using silane as a surface treatment showed highest fracture strength, but there were no significant differences between other surface treatments (p>0.05). 3. The reinforcing materials affect the fracture strength and pattern of composites inlay bridge. 4 The holes at the U-beam did not increase the fracture strength of composites inlay bridge.