• 제목/요약/키워드: Pre-cracks

검색결과 178건 처리시간 0.021초

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Effect of Pretreatments on Reducing Surface Cracks of Heat-treated Western Hemlock Roundwoods

  • Kim, Chung-Ho;Kang, Chun-Won;Kang, Seog-Goo;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권5호
    • /
    • pp.343-351
    • /
    • 2012
  • A large diameter roundwood is an important element of Korean traditional buildings, Hanok, and is hard to be dried without surface cracks. Four different pretreatments, such as pre-cracking, oil heating, kerfing-oil heating and PEG impregnation, were investigated for reducing the surface cracks of large-diameter roundwood specimens during heat treatment. The roundwood specimens of pre-cracking, oil heating and kerfing-oil heating showed surface cracks during pretreatment, but that of PEG impregnation did not. It was confirmed that kerfing reduced the total crack width. Among the four pretreatments and control only the PEG impregnation roundwood specimen had no crack on both outer and inner surfaces after heat treatment. The PEG impregnation specimen shrank only 1.6% in the tangential direction while the pre-cracking did 8.0%.

CFS 보강 R/C 보의 균열 및 탈착 (Debonding and Crack of the R/C Beam Strengthened with CFS)

  • 김충호;장희석;박현영;고신웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.173-176
    • /
    • 2005
  • This study look into the mechanisms of growth and magnification in the cracks and delamination on the beams repaired with CFS. The experimental parameters was a loading type, loading speed and pre-crack. In the experiments, it was confirmed that the failure of beams began with development and propagation of the delamination in the below the loading point due to magnification of cracks, but it was not concerned with loading type, loading speed and pre-cracks. Particularly, in the case of beams having the pre-cracks, growth of crack concentrated at the special crack below the loading point and led to failure of the beam by delamination due to magnification of crack.

  • PDF

미소피로균열의 검출과 정류균열 (Detection and non-propagating cracks of small fatigue crack)

  • 이종형
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.603-609
    • /
    • 1990
  • 본 연구에서는 미소균열의 정의로서 균열의 크기가 재료의 조직의 크기와 order적으로 같은 균열의 특성이라는 것과 균열의 크기가 소성역 크기와 order적으로 같은 균열의 특성에 착안해서 탄소강 평활재와 예균열재(pre-cracked specimen)에 대 해서 응력비 R=-1 및 R=0의 피로한도 특성과 평활재의 미소균열의 검출 및 정류균열의 생성기구를 균열 열림 닫힘에 주목해서 검토하였다.

Simulation of crack initiation and propagation in three point bending test using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Nezamabadi, Maryam Firoozi;Karbala, Mohammadamin
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.453-463
    • /
    • 2018
  • Three points bending flexural test was modelled numerically to study the crack propagation in the pre-cracked beams. The pre-existing double internal cracks inside the beam models were considered to investigate the crack propagation and coalescence paths within the modelled samples. Notch configuration effects on the failure stress were considered too. This numerical analysis shown that the propagation of wing cracks emanating from the tips of the pre-existing internal cracks caused the final breaking of beams specimens. It was also shown that when two notches were overlapped, they both mobilized in the failure process and the failure stress was decreased when the notches were located in centre line. However, the failure stress was increased by increasing the bridge area angle. Finally, it was shown that in all cases, there were good agreements between the discrete element method results and, the other numerical and experimental results. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.497-505
    • /
    • 2018
  • Three points bending flexural test was modeled numerically to study the crack propagation in the pre-cracked beams. The pre-existing edge cracks in the beam models were considered to investigate the crack propagation and coalescence paths within the modeled samples. The effects of particle size on the single edge-notched round bar in bending test were considered too. The results show that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In the present study, the influences of particles sizes on the cracks propagations and coalescences in the brittle materials such as rocks and concretes are numerically analyzed by using a three dimensional particle flow code (PFC3D). These analyses improve the understanding of the stability of rocks and concretes structures such as rock slopes, tunnel constructions and underground openings.

직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과 (Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition)

  • 오욱진;손용;손종윤;신광용;심도식
    • 소성∙가공
    • /
    • 제29권2호
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

사전균열로 손상된 RC 보의 탄소섬유시트 보수 후의 균열성장 및 박락거동 (Crack Growth and Debonding Behaviors of the Pre-cracked RC Beams Repaired with Carbon Fiber Sheets)

  • 김충호;고신웅
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.121-129
    • /
    • 2006
  • 본 연구는 균열이 발생한 R/C보를 탄소섬유시트(Carbon fiber sheet)로 보수했을 경우 시트의 박락과 균열의 확대 및 성장 메커니즘을 조사한 것이다. 실험변수는 하중형식, 재하속도, 사전균열 유무 등이다. 실험에서, 보의 파괴는 전단력 급변에 의한 재하점 직하부의 단차박리의 발전과 전파로 시작됨이 확인되었지만, 파괴기구는 하중형식, 재하속도, 사전균열 유무 등에 영향을 받지 않았다. 특히, 사전균열을 갖는 보의 경우, 균열의 성장은 재하점 직하의 특정한 균열에 집중되고, 이 균열의 확장에 의한 탈착이 보의 파괴를 이끌었다.