• Title/Summary/Keyword: Pre-conditioning ischemia

Search Result 4, Processing Time 0.018 seconds

Effect of Preconditioning Ischemia on Endothelial Dysfunction Produced by Ischemia-Reperfusion in Rabbit Coronary Artery

  • Suh, Suk-Hyo;Park, Yee-Tae;Kim, Woong-Heum;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.51-59
    • /
    • 1995
  • This study was designed to test whether or not 1) ischemia-reperfusion attenuates endothelium-dependent relaxation of coronary arteries and 2) preconditioning protects the arterial endothelium from ischemia-reperfusion injury. In anesthetized open chest rabbits, branches of the left circumflex artery were exposed to different combinations of the experimental conditions; ischemia (15 minutes), ischemia (15 minutes)-reperfusion (10 minutes), preconditioning ischemia, and pre-conditioning fellowed by ischemia-reperfusion. Preconditioning consisted of 3 occlusions of 2-min duration, each followed by n 5-min reperfusion. Rings of the artery exposed to the experimental condition and of normal left anterior descending coronary artery were prepared and suspended for isometric force measurement in organ chambers containing Krebs Ringer bicarbonate solution. The rings were contracted with 29.6 mM KCI. Ischemia alone did not attenuate endothelium-dependent relaxation by acetylcholine. However, ischemia-reperfusion significantly impaired endothelium-dependent relaxation. Endothelium-independent relaxation by sodium nitroprusside was not impaired by ischemia-reperfusion and the constrictive response to acetylcholine was not altered in reperfused rings without endothelium, compared with control rings. Arterial rings exposed to preconditioning followed by ischemia-reperfusion exhibited impaired endothelium-dependent relaxation by acetyl-choline. However, although preconditioning not fellowed by ischemia-reperfusion, attenuated endothelium-dependent relaxation at low concentrations of acetylcholine, the magnitude of the impairment by preconditioning followed by ischemia-reperfusion was significantly less than that of the impairment by ischemia-reperfusion alone. These data demonstrate that ischemia-reperfusion significantly attenuates endothelium-dependent relaxation by producing endothelial dysfunction and preconditioning Protects the endothelium of coronary arteries from ischemia-reperfusion injury.

  • PDF

Conditioning-induced cardioprotection: Aging as a confounding factor

  • Randhawa, Puneet Kaur;Bali, Anjana;Virdi, Jasleen Kaur;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.467-479
    • /
    • 2018
  • The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha ($PGC-1{\alpha}$) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of $Na^+$ and $K^+$, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.

The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity (중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화)

  • Kang, Kyoung-Ah;Seong, Ho-Hyun;Jin, Han-Byeol;Park, Jong-Min;Lee, Jong-Min;Jeon, Jae-Yong;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.

Effect of Ischemic Preconditioning for Preventing Ischemic Injury of the Spinal Cord (척추 신경의 허혈성 손상 예방을 위한 허혈성 전처치의 효과)

  • 홍종면;차성일;송우익;홍장수;임승운;임승운;임승평
    • Journal of Chest Surgery
    • /
    • v.34 no.11
    • /
    • pp.823-830
    • /
    • 2001
  • Background: Paraplegia is a serious complication of thoracic or thoracoabdominal aortic operations, which is related to ischemic injury of the spinal cord induced by low perfusion pressure during cross clamping of the aorta. Ischemic preconditioning of heart or brain with reversible sublethal ischemic injury induces resistance to subsequent lethal ischemia. The aim of this study is to investigate whether ischemic tolerance could be induced by the preconditioning of the spinal cord using swine model. Material and Method: The animals were randomly assigned to three groups: sham group(n=3), control group(n=6) and pre-conditioning group(n=8). In the sham group, we performed the left thoracotomy only without any ischemic injury. In the preconditioning group, the swine received reversible spinal cord ischemic injury by aortic clamping for 20 minutes, whereas control group had no previous aortic cross- clamping. Forty-eight hours later, the aorta was clamped for 30 minutes in both groups. Neurological examination was done 24 hours later, then the animals were euthanized for histopathology and malonedialdehyde(MDA) spectrophotometry assay of the spinal cord. Result: Statistically significant difference in neurological outcome was observed between the control and preconditioning groups at 24 hours after ischemic injury. The incidence of paraplegia and severe paresis was 100% in the control group, and 62.5% in the preconditing group(p=0.028). There was no statistically significant difference in histopathology and MDA assay of the ischemic spinal cord between these two groups with borderline statistical difference in MDA assay(p=0.0745). Conclusion: In the present swine study, ischemic preconditioning could induce tolerance against 30 minute ischemic insult of the spinal cord, although the animals did not completely recover(stand-up or walk). We expect that combining this preconditioning with other currently existing protection methods might lead to a synergistic effect, which warrants further investigation.

  • PDF