• Title/Summary/Keyword: Pre-combustion

Search Result 246, Processing Time 0.016 seconds

Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses (연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석)

  • Park, Jong-Seok;Shin, Jong-Wha;Ahn, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.

Heat Exchange Performance of Improved Heat Recovery System (개량형 열회수 시스템의 열교환 성능)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Kwon, Jin-Keun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • This study was carried out to improve the performance of pre-developed heat recovery devices attached to exhaust-gas flue connected to combustion chamber of greenhouse heating system. Four different units were compared in the aspect of heat recovery performance; A-, B-, and C-types are exactly the same with the old ones reported in previous studies. D-type newly developed in this experiment is mainly different with the old ones in its heat exchange area and tube thickness. But airflow direction(U-turn) and pipe arrangement are similar with previous three types. The results are summarized as follows; 1. System performances in the aspect of heat recovery efficiency were estimated as 42.2% for A-type, 40.6% for B-type, 54.4% for C-type, and 69.2% for D-type. 2. There was not significant improvement of heat recovering efficiency between two different airflow directions inside the heat exchange system. But considering current technical conditions, straight air flow pattern has more advantage than hair-pin How pattern (U-turn f1ow). 3. The main factors influencing on heat recovery efficiency were presumably verified to be the total area of heat exchange surface, the thickness of ail-flow pipes, and the convective heat transfer coefficient influenced by airflow velocity under the conditions of allowable pipe durability and safety. 4. Desirable blower capacity for each type of heat recovery units were significantly different to each other. Therefore, the optimum airflow capacity should be determined by considering in economic aspect of electricity required together with the optimum heat recovery performance of given heat recovery systems.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

Absorption characteristic of carbon dioxide in Ionic Liquids based sulfite anion in the pre-combustion condition (연소 전 조건에서 음이온이 Sulfite계인 이온성 액체의 CO2 흡수 특성)

  • Baek, Geun Ho;Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.763-769
    • /
    • 2021
  • In this study, ionic liquids were synthesized to remove carbon dioxide (CO2) on a laboratory scale. The vapor-liquid absorption equilibrium device (VLE) was used to investigate the carbon dioxide absorption capacity. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, showing excellent regeneration. Ethyl sulfite showed the highest absorption capacity of CO2 among the ionic liquids based on the sulfite anion. In particular, the absorption capacity of [beim] ethyl sulfite was 1.1 mol CO2 / mol IL at an absorption equilibrium pressure of 22 bar. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, from which regeneration is outstanding. After the absorption experiment, the viscosity of the sample tended to decrease by approximately 8% compared to that before the absorption experiment. On the other hand, the absorbent was synthesized in the first step. Moreover, the raw material used is also inexpensive and has excellent reproducibility and highly stable absorbent capacity.

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.