• 제목/요약/키워드: Pre-Position device

검색결과 32건 처리시간 0.02초

CV Joint 측정시스템용 Pre-Position 장치 개발에 관한 연구 (Development of Pre-Position device for CV Joint Measurement System)

  • 김동우;박광수;김봉준;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.156-159
    • /
    • 2005
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive put that transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. To guarantee the dimensional accuracy of the forged CV Joint, the quick and precise measurement is required to increase the inspection speed of forged products. Therefore in this study, PP(Pre-Position) Device to decrease the inspection time of measuring system has been developed to cope with forging cycle time. The measured inspection time confirms that the PPD is very effective in decreasing inspection time.

  • PDF

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

The Effect of Proprioceptive Position Sense by Lumbar Flexors and Extensors

  • Park, Ji-Won;Ko, Yu-Min;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • 제24권6호
    • /
    • pp.414-418
    • /
    • 2012
  • Purpose: Muscle fatigue affects proprioception, and it causes problems in spinal stability. The purpose of this study was to examine the effect on the accuracy of reproducing the lumbar angles before lumbar exercise and after fatiguing isokinetic lumbar exercise. Methods: Thirty healthy adults participated in this study. Before induction of fatigue by exercise, the proprioception was measured by Biodex. Lumbar positions were passively maintained on stimulation position ($25^{\circ}$ flexion and $25^{\circ}$ extension), and back to the starting position. Subjects actively repositioned the remembered stimulation position, and error degrees between the stimulation position and reposition were measured. Using an isokinetic device at $120^{\circ}$/sec of velocity of angle lumbar flexion/extension exercise resulted in muscle fatigue. The post-fatigue proprioceptive position sense was used in the same way as in pre-fatigue measurement. Results: Means of position sense of pre-fatigue were $2.19{\pm}1.97$ on flexion angle, and $5.04{\pm}2.84$ on extension angle. After exercise induced fatigue, means of position sense were $2.37{\pm}1.83$ on flexion angle, and $4.93{\pm}2.57$ on extension angle. Results of this study showed significant differences of lumbar proprioceptive position sense between pre- and post-fatigue. Conclusion: Lumbar proprioception sense in active repositioning in flexion and extension was affected in the presence of muscle fatigue. Therefore, it should be noted that therapeutic exercise for patients with abnormal proprioceptive sense or elderly people must be performed with care because muscle fatigue can cause secondary damage.

군 모바일 단말기를 위한 자가적응 소프트웨어 기반 MOSAIC 아키텍처 설계 및 검증 (A Design and Verification of MOSAIC Architecture Based on Self-Adaptive Software for the Military Mobile Equipment)

  • 김종영;윤희병
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.852-860
    • /
    • 2010
  • An environment in which the software is operated become more complex and changed dynamically. Such software requires the ability to adapt in accordance with operating environments, by monitoring the changes of user requirements and operating environments. Especially, the mobile device used in military operation requires more dynamical adaptation than the mobile device in normal environment. In this paper, we propose MOSAIC architecture based on Self-Adaptive Software suitable for military mobile device and verify the results. The proposed architecture consists of context manager, evaluation manager and adaptation manager. We simulate the MOSAIC architecture by modelling PRE(Position Reporting Equipment) used in the army and verify four types of operational mode and dynamical reconfiguration of user interface.

The immediate effects of local vibration on ankle plantar flexor muscle activation and peak torque in healthy adults

  • Cho, Minjo;Yoon, Doyoo;Yoo, Jaehyun;Yi, Donghyun;Kang, Daewon;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권2호
    • /
    • pp.113-119
    • /
    • 2020
  • Objective: The vibration device is one of the most commonly used warm-up devices not only for healthy athletes but also for healthy individuals. Therefore, this study aimed to investigate the immediate effects of local vibration on ankle plantar flexor muscle activation and peak torque in healthy adults. Design: One-group pretest-posttest design. Methods: This was a single-group study comprising a total of 36 (16 males and 20 females) participants. The average age of the 36 participants was 22.3 years. All the participants' concentric and eccentric peak torques of the gastrocnemius lateralis muscle were measured using an isokinetic device. Simultaneously, the participants' muscle activity was measured by surface electromyography. After the pre-experimental data were collected, the participants comfortably sat on the prepared chair with their hips and knees flexed to 90°. While in sitting position, local vibration was applied for 10 minutes using a 1:1 ratio intermittent pulsing mode device based on a previous study. Then, the post-experimental data were collected immediately after the local vibration by performing a similar process performed during the pre-experimental data collection. Results: The results showed a significant difference in muscle activity and eccentric peak torque (p<0.05). On the contrary, concentric peak torque values showed an insignificant difference with pre- and post-value. Conclusions: The results of this study demonstrated that local vibration can be possibly considered as one of the effective ways to increase ankle plantar flexor muscle activity and muscle performance, specifically the eccentric peak torque, in healthy adults.

유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계 (Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm)

  • 황윤권;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어 (Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility)

  • 강민식
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

심폐소생술 시 아이젤의 고정 방법에 따른 환기량의 변화 비교: 시뮬레이션 마네킨을 이용한 연구 (Comparison of changes in ventilation volume according to fixation method of I-gel during cardiopulmonary resuscitation: a study using a simulated manikin)

  • 김선태;신상열;최정우
    • 한국응급구조학회지
    • /
    • 제25권3호
    • /
    • pp.7-16
    • /
    • 2021
  • Purpose: The I-gel device is Korea's most frequently used airway management method during pre-hospital cardiopulmonary resuscitation (CPR). This study aimed to compare changes in ventilation volume according to the fixation method with a simulated manikin. Methods: We placed I-gel into an advanced life support simulator and compared tape and band fixation conditions. CPR was performed according to the 2020 Korean CPR guidelines, using a mechanical chest compression device and an adult bag. The positional shift of I-gel and the ventilation volume of the simulated manikin were measured after performing CPR for 20 minutes. Five trials were carried out in each setting. Statistical analysis was carried out with SPSS 27.0. P < .05 was considered significant. Results: Positional shift after 20 minutes of CPR was as follows: tape fixation, 7.2 ± 0.2 mm; band fixation, no change, indicating a significant difference between the two groups (p=.003). The mean ventilation volume was tape fixation, 482.63 ± 30.84 mL; band fixation, 544.96 ± 22.98 mL, showing a significant difference (p=.002). Conclusion: When using the I-gel during pre-hospital CPR, using a band-type fixing device with elasticity rather than fixing the tape provides stable and appropriate ventilation by maintaining the fixed position.

Immediate Effect of Postural Control of the Contra-Lateral Side on Exercise-Induced Fatigue of the Ipsi-Lateral Plantar Flexor Muscle

  • Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • 제30권2호
    • /
    • pp.63-66
    • /
    • 2018
  • Purpose: The purpose of the current study was to examine the effects of exercise-induced fatigue of the plantar flexor muscle in the dominant ankle on the plantar flexor strength and postural control function of the contra-lateral side. Methods: Twenty-one young adults (male: 10, female: 11) volunteered to participate in this study. An exercise-induced fatigue protocol to induce fatigue was performed in the plantar flexor of the dominant ankle. For the fatigue protocol, the participants were instructed to raise their heels as high as possible in the position with one leg stance of the dominant lower limb, and the heel was then downed after holding for 1 second. The muscle strength of the contra-lateral plantar flexor was measured using a digital muscle strength test device, and the static and dynamic postural control were tested by acquiring the center of gravity velocity while performing one leg standing. A paired t-test was used to identify the differences between the pre- and post, and the data were analyzed using SPSS 12.0 software. Results: Comparison of the pre- and post-test data revealed a significant difference in the plantar flexor strength and dynamic postural control after exercise-induced muscle fatigue in the dominant side. On the other hand, there was no significant difference in the static postural control. Conclusion: These findings have practical implications, suggesting that unilateral muscle fatigue affects the ankle muscle strength and postural ability of the contralateral side.

Fuzzy Simulation of a Multi-electronic Acupuncture System and Clip-type Pulsimeter Equipped with a Magnetic Sensing Hall Device

  • Hong, You-Sik;Rhee, Jin-Kyu;Kim, Han-Kyu;Son, Il-Ho;Yoon, Woo-Sung;Lee, Nam-Kyu;Park, Do-Young;Kim, Keun-Ho;Kim, Yong-Jin;Khajidmaa, P.;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.255-260
    • /
    • 2014
  • A portable clip-type pulsimeter equipped with a magnetic sensing Hall device has been developed to raise the accuracy of oriental disease diagnosis and therapy by convergence of magnetism and oriental medicine. To improve accuracy and reliability of conventional pulsimeter due to subjective analysis of the pulse wave and measuring position dependency of the arterial pulse sensor, the fuzzy algorithm was applied to analyze the strong- and weak-pulse wave symptom. Optimal time for electronic acupuncture was calculated using fuzzy rules and interference were drawn from objective data in view of pre-treatment. Moreover, the electrical characteristics of the pain parts that respond to acupuncture point were applied in view of post-treatment to propose the scientific pulse wave algorithm and simulation experiment.