• 제목/요약/키워드: Pre-Crack

Search Result 277, Processing Time 0.02 seconds

Development of a Mechanical Crack Model to Analyze Deformation and Failure Mechanism of Rock (암석의 변형 및 파괴거동의 해석을 위한 균열모형 개발에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.96-106
    • /
    • 1998
  • Rock contains discontinuities at all scales. These discontinuities make rock behave in a complex way. This paper discusses a new approach to underground design based on the theory of rock fracture mechanics. The mechanism of deformation and failure of coal was studied by observing the distributions of length, orientation and spacing of the pre-existing as well as stress-induced cracks. Different types of crack information. The crack information is dependent on the scale used. The cracks propagate along the intersections of the pre-existing cracks, and both extensile and shear crack growth occur depending on the direction of the load relative to the bedding planes. An analytical model that takes into account both shear and extensile crack growth was developed to predict the nonlinear stress-strain behavior of coal including strain-hardening and strain-softening.

  • PDF

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF

Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates (마찰교반용접된 7075-T651 알루미늄 판재의 피로균열전파의 거시적 및 미시적 관찰)

  • Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, in order to investigate the effects of marco and microscopic observations of fatigue crack growth in friction stir welded (FSWed) 7075-T651 aluminum alloy plates, fatigue crack growth tests were performed under constant amplitude loading condition at room temperature with three different pre-cack locations, namely base metal (BM-CL) and two kinds of pre-crack locations in welded joints, weld metal (WM-CL) and heat affected zone (HAZ-CL) specimens. The fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy plates were discussed based on the marco and microscopic fractographic observations. The marcoscopic aspects of surface crack growth path for BM-CL and HAZ-CL specimens indicate relatively straight lines, however, the crack growth paths of WM-CL specimens grow first straight and by followed toward the TMAZ and HAZ. The microscopic aspects of fatigue fracture for BM-CL and HAZ-CL specimens indicate typical fatigue striation, but WM-CL showed intergranular fracture pattern by micro structural changes of FSW process.

Comparison of the Characteristics of FCAW and SAW for the Brittle Crack Propagation of Welded Parts of BCA Steel in Container Ships (컨테이너선의 후 물재 용접부 취성 균열 전파에 대한 FCAW와 SAW의 비교 특성에 관한 연구)

  • Choi, Kyung-Shin;Lee, Sang-Hoon;Choi, JeongJu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.24-32
    • /
    • 2021
  • The size of container ships is increasing to increase the cargo loading capacity. However, container ships are limited in terms of the hull longitudinal strength. To overcome this limitation, brittle crack arrest steel can be used. This study was aimed at examining the influence of the heat input on the welding procedures of flux cored arc welding and submerged arc welding. In the experiment, the crack tip opening displacement test, which pertains to a parameter of fracture mechanics, was performed, and a 3-point bending tester was adopted. Based on the results, the crack measurement method was presented, and the stress expansion coefficient value for the pre-fatigue crack length was derived according to the heat input after the pre-cracking length was measured. It was noted that the heat input affected the crack tip opening displacement of brittle crack arrest steel.

Short Crack Analysis by Fatigue Crack Opening Behavior (피로균열개구거동을 이용한 짧은균열의 거동 분석)

  • Song, Sam-Hong;Lee, Kyeong-Ro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

Investigation on Explosion Bulge Test Results of 800 MPa Grade Pre-heat Free Welding Consumables (800 MPa급 무예열 용접재료의 폭파변형성능에 관한 연구)

  • Park, Tae-Won;Song, Young-Beum;Kim, Jin-Young;Park, Chul-Gyu;Kim, Hee-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.80-86
    • /
    • 2009
  • The Cu-bearing PFS-700 steel which has yield strength over 700 MPa was developed to replace the existing submarine structural material, HY-100. The PFS-700 steel has a combination of good mechanical properties and superior weldability. Becaus of that, it can be welded without pre-heating. The application of PFS-700 steel to submarine or battle ship will give a great reduction of cost by omitting pre-heating or lowering pre-heat temperature. To develop pre-heating free welding consumables that match and take advantage of PFS-700 steel, new welding consumables have been designed for the GMAW, SAW processes and explosion bulge test(EBT) was conducted to see the reliability of welded structure. All welds were made without pre-heating, and the inter-pass temperature was below $50^{\circ}C$ for SAW50 and $150^{\circ}C$ for GMAW and SAW150. All EBT specimens show over 14% thickness reduction without through-thickness crack or crack propagation to the hole-down area. Tensile properties for all welding conditions show higher(GMAW) or similar values(SAW50, SAW150) to the base metal. Charpy impact values for the weld metal also show 163.5J(GMAW), 95.4J(SAW50) and 69.0J(SAW150), which meet the goal(higher than 50J) of this project.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.