• 제목/요약/키워드: Practical stress

검색결과 913건 처리시간 0.026초

H형(形) 강(鋼) 보의 횡좌굴(橫挫屈)에 관(關)한 연구(硏究) (A Study On Lateral Buckling Of H-Section Steel Beams)

  • 김석중
    • 산업기술연구
    • /
    • 제4권
    • /
    • pp.29-35
    • /
    • 1984
  • Buckling is a significant behavior to be considered whenever we design steel structures. In the case of H-shape beams, the lateral buckling occured by bending moment must be considered. Because of the lateral buckling of H-shape beams, the bending strength of the beams are determined by the lateral buckling stress instead of the allowable bending stress. Lateral buckling stress equation, consisting of two terms, i. e. ${\sigma}_{cr}({\nu},{\omega})={\sqrt{[{\sigma}_{cr}({\nu})]^2+[{\sigma}_{cr}({\omega})]^2}}$ has been using, but for the practical purpose of use the following equations are using two, i. e. ${\sigma}_{cr}({\nu})={\frac{0.65E}{{\ell}_h/A_f}}$, ${\sigma}_{cr}({\omega})={\frac{{\pi}^2E}{({\ell}_b/i_b)^2}}$. When we use the above equations, the results are different according to the shape of beam section, and they a re rather complex. In this study lateral buckling stress equation is derived, and the proposed formula$({\sigma}_{cr}(t))$ is compared with above mentioned two basic and practical equations. To verify the proposed formula experimentaly, 16H-shape beams which have different slender ratios arc tested by applying pure bending momet. Through the experiments the buckling behavior of H-shape beams is clarified, and the results shows that the proposed formula$({\sigma}_{cr}(t))$ is accurate enough for practical purpose.

  • PDF

구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석 (The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient)

  • 양성모;송준혁;강희용;노홍길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구 (A Study on the Prediction of Fatigue Life by use of Probability Density Function)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF

화이트노이즈를 이용한 막장력 측정장치의 소형·경량화 검증 (Verification for Reduction of Membrane Stress Measurement Equipment Size Using White Noise Sound Wave)

  • 진상욱
    • 한국공간구조학회논문집
    • /
    • 제14권3호
    • /
    • pp.67-74
    • /
    • 2014
  • The author has proposed and verified the accuracy through experiments on a method of measurement through the use of sound waves that not only can quantitatively measure each of the dual directions of the fiber axis with high accuracy of membrane tension created on the surface of the membrane structure, but also can be easily operated in the field of construction. This paper reports the solution for problems of variables caused in the process of downsizing of the measurement equipment in order for practical use, and verifies the correspondence possibility of various stress ratios.

-재난대응공무원의 스트레스 및 PTSD 완화 교육프로그램 재설계 및 교육효과 실증분석- (Redesigning education programs for alleviating disaster response officials' stress·PTSD and it's empirical analysis for effectiveness)

  • 박찬석
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.147-157
    • /
    • 2014
  • Firefighters receive extreme stress and suffer from PTSD in disaster. But we have not been paid attention to them. The purpose of this study is to analyze the problems of previous PTSD education programs in fire academy and to present the practical educational programs for firefighters to use in the disaster field. In the empirical analysis of this practical educational programs(EFT program), this program is more effective than existing theory-focused education training program.

Al-Zn-Mg 3원계 알루미늄 합금의 크리프 거동 (Creep Behaviour of Al-Zn-Mg Ternary Aluminum Alloy)

  • 윤종호;황경충
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.203-208
    • /
    • 2004
  • To make practical applications of Al-Zn-Mg ternary aluminum alloy effectively in various field, a series of static creep tests under the 16 temperature-stress combination conditions had been performed. The creep tester with constant stress loading was designed and made by the authors and used in this study. The higher the creep temperature rose, the less the stress exponents became. The bigger the applied stresses became, the less values the creep strain activation energy showed. The life prediction constant of Larson-Miller parameter was calculated as about 2.3. In the fractography, the ductile fracture with dimples by intergranular breakage was primarily observed. We can make practical use of these test data in the design, the life prediction and the prevention of the accidents of the thermal facilities, etc.

The Practice of Overcoming Stress During Distance Learning of Students - Future Teachers of Preschool Education Institutions

  • Oksana Dzhus;Oleksii Lystopad;Iryna Mardarova;Tetyana Kozak;Tetiana Zavgorodnia
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.151-155
    • /
    • 2023
  • The main purpose of the article is to analyze the practice of overcoming during distance learning of students-future teachers of a preschool education institution. The key aspects of practical activities to counter a stressful situation during distance learning of students-future teachers of a preschool education institution are identified. The research methodology includes a number of methods designed to analyze the practice of coping with stress during distance learning of students. The results of the study include the definition of the main elements of practical activities to counteract stress and stressful situations of different scales in the distance learning of students-future teachers of a preschool education institution. Further research requires the analysis of international experience in dealing with a stressful situation during distance learning of students.

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

실하중 이력에 의한 조인트의 동적강도해석 (Dynamic Stress Analysis of joint by Practical Dynamic Load History)

  • 송준혁;강희용;양성모
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

알루미늄 고정 스크롤 열간 단조공정의 금형 파괴 원인 및 실용적 대책 (Reason of Die Fracture in Hot Forging of an Aluminum Fixed Scroll and Its Practical Measures)

  • 김영신;전만수
    • 소성∙가공
    • /
    • 제26권3호
    • /
    • pp.156-161
    • /
    • 2017
  • In this study, the reason of die fracture occurring in hot forging of an aluminum fixed scroll was studied, based on experiments and finite element predictions. The material is assumed to be rigid-viscoplastic, and the die is rigid for the finite element predictions. The stress in the tension at the wrap root is known to cause brittle fracture, and the increase in the tensile stress is owing to the unbalanced filling of material into the die cavities between both sides of the warp. Based on the empirical and numerical achievements, the effects of geometrical parameters of the material on the die fracture were examined to find practical measures for elongated die life. It has been shown from the parametric study that the material with the optimized trapezoidal cross-section, which can be easily made during cutting or the optimized cylindrical billet with its eccentric placement in the die cavity, can considerably reduce the magnitude of the tensile stress around the die corner fractured, indicating that economical manufacturing with reduced number of stages and elongated die life can be realized at once using the optimized practical initial material.