• 제목/요약/키워드: Practical dynamic load

검색결과 109건 처리시간 0.019초

실하중 이력에 의한 조인트의 동적강도해석 (Dynamic Stress Analysis of joint by Practical Dynamic Load History)

  • 송준혁;강희용;양성모
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

열차하중을 받는 트러스교의 동적하중모형 연구 (A Study on the Dynamic Load Model of Truss Bridge subjected to Moving Train Loads)

  • 안주옥;박상준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.111-118
    • /
    • 1996
  • Dynamic load models which show the practical behavior of truss bridge subjected to moving train load are presented. Three basically approaches are available for evaluating structural response to dynamic effects : moving force, moving mass, and influence moving force and mass. Simple warren truss bridge model is selected in this research, and idealized lumped mass system, modelled as a planar structure. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of truss bridge and moving train load. The solution of the uncoupled equations of motion is solved by Newmark-$\beta$ method. The results show that dynamic response of moving mass and static analysis considering the impact factor specified in the present railway bridge code was nearly the same. Generally, the dynamic response of moving force is somewhat greater than that of moving mass. The dynamic load models which are presented by this study are obtained relatively adequate load model when apply to a truss bridge.

  • PDF

Development of Composite Load Models of Power Systems using On-line Measurement Data

  • Choi Byoung-Kon;Chiang Hsiao Dong;Li Yinhong;Chen Yung Tien;Huang Der Hua;Lauby Mark G.
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.161-169
    • /
    • 2006
  • Load representation has a significant impact on power system analysis and control results. In this paper, composite load models are developed based on on-line measurement data from a practical power system. Three types of static-dynamic load models are derived: general ZIP-induction motor model, Exponential-induction motor model and Z-induction motor model. For the dynamic induction motor model, two different third-order induction motor models are studied. The performances in modeling real and reactive power behaviors by composite load models are compared with other dynamic load models in terms of relative mismatch error. In addition, numerical consideration of ill-conditioned parameters is addressed based on trajectory sensitivity. Numerical studies indicate that the developed composite load models can accurately capture the dynamic behaviors of loads during disturbance.

구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석 (The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient)

  • 양성모;송준혁;강희용;노홍길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

등가정하중을 이용한 유연다물체 동역학계의 구조최적설계 (Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method)

  • 강병수;박경진
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.48-54
    • /
    • 2004
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. In practical applications, it is customary to transform the dynamic loads into static loads by dynamic factors, design codes, and etc. But the optimization results with the unreasonably transformed loads cannot give us good solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple loading conditions which are not costly to include in modem structural optimization. In this research, the proposed algorithm is applied to the optimization of flexible multibody dynamic systems. The equivalent static load is derived from the equations of motion of a flexible multibody dynamic system. A few examples that have been solved before are solved to be compared with the results from the proposed algorithm.

역문제에 의한 구조물의 실동하중 해석 (Analysis of Practical Dynamic Force of Structure with Inverse Problem)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템 (Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration)

  • 송준혁;양성모;강희용;유효선
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.

PSD 함수를 이용한 인공윤하중의 생성기법에 대한 연구 (A Study on Artificial Wheel Load Generation Method Using PSD Analysis)

  • 조광일;최문석;임지영;김상효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.184-189
    • /
    • 2008
  • In this study, an artificial wheel load generation method is proposed to assist practical engineers performing dynamic analysis with simple procedure. To generate an artificial wheel loads from running vehicle, PSD(Power Spectrum Density) profiles of actual wheel load were sampled in terms of various road roughnesses. A detailed truck and bridge models were used for sampling actual wheel load to represent the real motion of moving vehicle. These wheel load profiles were simplified for the artificial wheel load. The simplification of actual wheel load profiles was performed by regression analysis. The result showed that the artificial wheel load well represents the real profiles of wheel load.

  • PDF

Eigenfunction expansion solution and finite element solution for orthotropic hollow cylinder under sinusoidal impact load

  • Wang, X.;Dai, H.L.
    • Structural Engineering and Mechanics
    • /
    • 제16권1호
    • /
    • pp.35-46
    • /
    • 2003
  • The histories and distributions of dynamic stresses in an orthotropic hollow cylinder under sinusoidal impact load are obtained by making use of eigenfunction expansion method in this paper. Dynamic equations for axially symmetric orthotropic problem are founded and results are carried out for a practical example in which an orthotropic hollow cylinder is in initially at rest and subjected to a dynamic interior pressure $p(t)=-{\sigma}_0(sin{\alpha}t+1)$. The features of the solution appear the propagation of the cylindrical waves. The other hand, a dynamic finite element solution for the same problem is also got by making use of structural software (ABAQUS) program. Comparing theoretical solution with finite element solution, it can be found that two kinds of results obtained by two different solving methods are suitably approached. Thus, it is further concluded that the method and computing process of the theoretical solution are effective and accurate.

Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load

  • Zhu, S.Q.;Chen, X.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.753-765
    • /
    • 2007
  • The response histories and distribution of dynamic interlaminar stresses in composite laminated plates under free vibration and thermal load is studied based on a thermoelastodynamic differential equations. The stacking sequence of the laminated plates may be arbitrary. The temperature change is considered as a linear function of coordinates in planes of each layer. The dynamic mode of displacements is considered as triangle series. The in-plane stresses are calculated by using geometric equations and generalized Hooke's law. The interlaminar stresses are evaluated by integrating the 3-D equations of equilibrium, and utilizing given boundary conditions and continuity conditions of stresses between layers. The response histories and distribution of interlaminar stress under thermal load are presented for various vibration modes and stacking sequence. The theoretical analyses and results are of certain significance in practical engineering application.