• Title/Summary/Keyword: Pr(Remanent polarization)

Search Result 73, Processing Time 0.03 seconds

Structure and Ferroelectric properties of BCeT Thin Films (BCeT 박막의 구조 및 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.245-248
    • /
    • 2003
  • Randomly oriented ferroelectric cerium-substituted $Bi_4Ti_3O_{12}$ thin films have been prepared by using metal-organic decomposition method. The layered perovskite structure was investigated using annealing for 1 h in the temperature range from $550\;{\sim}\;750\;^{\circ}C$. The structure and morphology of the films were characterized using X-ray diffraction and scanning electron microscopy The $Bi_{3.4}Ce_{0.6}Ti_3O_{12}$ (BCeT) thin films showed a perovskite phase and dense microstructure. The grain size of the BCeT films increasedwith increasing annealing temperature. The hysteresis loops of the films were well defined at temperatures above $600\;^{\circ}C$. The 200-nm-thick BCeT thin films annealed at $650\;^{\circ}C$ showed a large remanent polarization (2Pr) of 59.3 ${\mu}C/cm^2$ at an applied voltage of 10 V. The BCeT thin films showed good fatigue endurance up to $5\;{\times}\;10^9$ bipolar cycling at 5 V and 100 kHz.

  • PDF

Crystallization and Electrical Properties of SBN60 Thin Films Prepared by Ion Beam Sputter Deposition

  • Jang, Jae-Hoon;Jeong, Seong-Won;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.10-13
    • /
    • 2005
  • $Sr_{0.6}Ba_{0.4}Nb_{2}O_{6}$, hereafter SBN60, thin films of 300 nm thickness were deposited using ion beam sputtering technique, in which sintered ceramic target of the same composition was utilized and the $Ar:O_{2}$ gas ratio was controlled during deposition onto $Pt(100)/TiO_{2}/SiO_{2}/Si$ substrate. Crystallization and orientation behavior as well as electrical properties of the films were examined after annealing treatment at $650{\sim}800{\cric}C$. It was found that the film orientation was dependent upon $Ar:O_{2}$ratio, in which strong (00l) orientation was developed when the gas ratio was about 1:4 at $4.3{\times}10^{-4}$ torr. Typical remanent polarization (2Pr), the coercive field (Ec) and the dielectric constant of Pt/SBN60/Pt thin film capacitor were approximately $10{\mu}C/cm^{2}$, 60 kV/cm, and 615, respectively.

Ferroelectric Properties of Chiral Compound $SrBi_2Ta_2O_9$ Thin Films for Non-Volatile Memories (비 휘발성 기억소자 용 $SrBi_2Ta_2O_9$ 박막의 강유전체 특성)

  • Lee, Nam-Hee;Lee, Eun-Gu;Lee, Jong-Kook;Jang, Woo-Yang
    • Korean Journal of Crystallography
    • /
    • v.11 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Ferroelectric SrBi2Ta2O9 (SBT) thin films of Pt/Ti/SiO2 electrode were fabricated using a sintered SBT target with various Bi2O3 content by rf magnetron sputtering. Good hysteresis loop characteristics were observed in the SBT thin films deposited with 50mol% excess Bi target. SBT thin films crystallized from 650℃ however, good hysteresis loop can be obtained in the film annealed above 700℃. pt/TiO2/SiO2 and Pt/SiO2 electrodes were also used to investigate the Pt electrode dependence of SBT thin films. SBT thin films showed random oriented polycrystalline structure and similar morphology regardless of electrodes with quite different surface morphology. A 0.2㎛ thick SBT film annealed at 750℃ exhibited the remanent polarization (2Pr) of μC/㎠ and coercive voltage(Vc) of 1V at an applied voltage of 5V.

  • PDF

Dielectric and Electrical Properties of $Sr_{0.9}Bi_{2+x}Ta_2O_9$ Thin Films on $IrO_2$ Electrode ($IrO_2$를 하부전극으로 사용한 $Sr_{0.9}Bi_{2+x}Ta_2O_9$ 박막의 유전 및 전기적 특성)

  • 박보민;송석표;정병직;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.233-239
    • /
    • 2000
  • Sr0.9Bi2+xTa2O9(x=0, 0.1, 0.2, 0.3) thin films on IrO2/SiO2/Si or Pt/Ti/SiO2/Si substrate were prepared by spin coating method using SBT stock solutions synthesized by MOD process. SBT thin films on IrO2 transformed to layered perovskite phase at $700^{\circ}C$, but showed low breakdown voltage due to their porous microstructure. The smaple of Sr0.9Bi2+xTa2O9 composition showed the best dielectric and electrical properties. When the sample of the same composition was annealed at 80$0^{\circ}C$, the dielectric and electric properties were improved due to the grian growth and dense surface. the remanent polarization values(2Pr) at $\pm$3 V for IrO2 and Pt electrodes were 10.5, 7.15$\mu$C/$\textrm{cm}^2$, respectively. The SBT thin film with IrO2 electrode showed the lower coercive field. The leakage current density and breakdown voltage of SBT thin films on IrO2 were higher than those on Pt.

  • PDF

Preparation of Ferroelectric $YMnO_3$ Thin Films by Metal-Organic Decomposition Process and their Characterization (Metal-Organic Decomposition법에 의한 강유전성 $YMnO_3$ 박막의 제조 및 특성)

  • 김제헌;강승구;김응수;김유택;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.665-672
    • /
    • 2000
  • The ferroelectric YMnO3 thin films were prepared by MOD(metal-organic decomposition) method with Y- and Mn-acetylacetonate as starting materials. Thin films were grown on various substrates by spin-coating technique. The crystalline phases of the thin films were identified by X-ray diffractometer as a function of heat-treatment temperature, pH of coating solution and substrate. In addition, the effect of Mn/Y molar ratio(0.8~1.2) on the formation of hexagonal-YMnO3 phase was investigated. In forming highly c-axisoriented hexagonal-YMnO3 single phase, the Pt coated Si substrate was more effective than the bare Si substrate, and the optimum heat-treatment condition was at 82$0^{\circ}C$ for 30 min. Higher Mn/Y molar ratio within 0.8~1.2 and pH of YMnO3 precursor solution within 0.5~2.5 favored formation of ferroelectric hexagonal phase rather than orthorhombic phase. Leakage current density of the hexagonal-YMnO3 thin film formed on Pt(111)/TiO2/SiO2/Si substrate was low enough as 0.4~4.0$\times$10-8(A/$\textrm{cm}^2$) at 5 V and its remanent polarization(Pr), calculated from the P-E hysteresis loop, was 3 nC/$\textrm{cm}^2$.

  • PDF

Ferroelectric properties of BET Thin Films for FRAM (FRAM 응용을 위한 BET 박막의 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Tae-Hyung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.200-203
    • /
    • 2003
  • Ferroelectric europium-substitution $Bi_4Ti_3O_{12}$ thin films were fabricated by spin-coating onto a Pt/Ti/$SiO_2$/Si substrate. The $Bi_{3.25}Eu_{0.75}Ti_3O_{12}$ (BET) films have polycrystalline structure annealed at 700 C. We investigated that the influence of $Bi_4Ti_3O_{12}$ thin films by substituting for Bi ions with Bi ions using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). From the XPS measurement, it was suggested that the stability of the metal-oxygen octahedral should be related to substitute for Bi ions with Eu ions at annealed $800^{\circ}C$. The BET thin films showed a large remanent polarization (2Pr) of $60.99C/cm^2$ at an applied voltage of 10 V. The BET thin films exhibited no significant degradation of switching charge at least up to $5{\times}10^9$ switching cycles at a frequency of 50 kHz.

  • PDF

Fabrication of FerroelectricLiNbO$_3$ Thin Film/Si Structures aud Their properties (강유전체 LiNbO$_3$ 박막/Si 구조의 제작 및 특성)

  • 이상우;김채규;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.21-24
    • /
    • 1997
  • Ferroeletric LiNbO$_3$ thin films hale been prepared directly on Si(100) substrates by conventional RF magnetron spurttering system for nonvolatile memory applications. As-deposited films were performed RTA(Rapid Thermal Annealing) treatment in an oxygen atmosphere at 600 $^{\circ}C$ for 60 s. The rapid thermal annealed films were changed to poly-crystalline ferroelectric nature from amorphous of as-deposition. The resistivity of the ferroelectric LiNbO$_3$ film was increased from a typical vague of 1~2$\times$10$^{8}$ $\Omega$.cm before the annealing to about 1$\times$10$^{13}$ $\Omega$.cm at 500 kV/cm and reduce the interface state density of the LiNbO$_3$/Si(100) interface to about 1$\times$10$^{11}$ cm$^2$ . eV. Ferroelectric hysteresis measurements using a Sawyer-Tower circuit yielded remanent polarization (Pr) and coercive field (Ec) values of about 1.2 $\mu$C/cm$^2$ and 120 kV/cm, respectively.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics

  • Yoo, H.S.;Son, Y.H.;Hong, T.W.;Ur, S.C.;Ryu, S.L.;Kweon, S.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.533-534
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. All XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050\;^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050\;^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5kV. From these results, a BLT ceramic target for plused laser deposition (PLD) system was successfully fabricated.

  • PDF

Annealing Effects of Laser Ablated PZT Films

  • Rhie, Dong-Hee;Jung, Jin-Hwee;Cho, Bong-Hee;Ryutaro Maeda
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.528-531
    • /
    • 2000
  • Deposition of PZT with UV laser ablatio was applied for realization of thin film sensors and actuators. Deposition rate of more than 20nm/min was attained by pulsed KrF excimer laser deposition, which is fairly better than those obtained by the other methods. Perovskite phase was obtained at room temperature deposition with Fast Atom Beam(FAB) treatment and annealing. Smart MEMS(Micro electro-mechanical system) is now a suject of interest in the field of micro optical devices, micro pumps, AFM cantilever devices etc. It can be fabricated by deposition of PZT thin films and micromachining. PZT films of more than 1 micron thickness is difficult to obtain by conventional methods. This is the reason why we applied excimer laser ablation for thin film deposition. The remanent polarization Pr of 700nm PZT thin film was measured, and the relative dielectric constant was determined to about 900 and the dielectric loss tangent was also measured to be about 0.04. XRD analysis shows that, after annealing at 650 degrees C in 1 hour, the perovskite structure would be formed with some amount of pyrochlore phase, as is the case of the annealing at 750 degrees C in 1 hour.

  • PDF

Ferroelectric properties of sol-gel derived Tb-doped PZT thin films (Sol-gel법으로 제조된 Tb-doped PZT(60/40) 박막의 강유전 특성)

  • Son, Young-Hoon;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • Tb-doped lead zirconate titanate($Pb_{1.1}(Zr_{0.6}Ti_{0.4})O_3$; PZT) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates prepared by a sol-gel method. Films have a Zr/Ti ratio of 60:40 and perovskite phase structure. The effect on the structural and electrical properties of films measured according to Tb content. Dielectric and ferroelectric properties of PZT thin films were altered significantly by Tb-doping. The PZT thin film with higher dielectric constant and improved leakage current characteristic was obtained by adding 0.3 mol% Tb. At 100 kHz, the dielectric constant and the dielectric loss of the 0.3 mol% Tb-doped PZT thin film were 1611 and 0.24, respectively The remanent polarization(2Pr) of the 0.3 mol% Tb-doped PZT thin film was $61.4\;{\mu}C/cm^2$ and the coercive field was 61.9 kV/cm. Tb-doped PZT thin films showed improved fatigue characteristics comparing to the undoped PZT thin film.

  • PDF