• Title/Summary/Keyword: Pozzolanic admixture

Search Result 46, Processing Time 0.019 seconds

Feasibility of Korean Rice Husk Ash as Admixture for High Strength Concrete: Particle Size Distribution, Chemical Composition and Absorption Capacity Depending on Calcination Temperature and Milling Process (고강도 콘크리트 혼화재로서 국산 왕겨재의 활용 가능성: 소성 온도와 분쇄공정 유무에 따른 입도, 성분 및 흡습 성능)

  • Kwon, Yang-Hee;Hong, Sung-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.111-117
    • /
    • 2017
  • This study examined the material properties of Korean rice husk ash (RHA) according to the manufacturing process, and evaluated the feasibility of its use as a new admixture for high strength concrete. For this purpose, its particle size distribution, chemical composition, and microstructure were analyzed under various parameters, such as calcination temperature ($400^{\circ}C$, $650^{\circ}C$, and $900^{\circ}C$) and the inclusion of a milling process. X-ray fluorescence analysis confirmed that the silicon oxide ($SiO_2$) content of RHA was improved to more than 92% with a calcination process at $650^{\circ}C$ or higher. In addition, microstructural analysis showed that the RHA calcined at $650^{\circ}C$ has a porous structure. Because of this, the absorption capacity of the RHA was improved. On the other hand, when the milling process was applied, the porous structure was destroyed; thus, the absorption capacity tended to decrease further. Based on the analysis results, it was concluded that RHA calcined at $650^{\circ}C$ can be used as an admixture for high strength concrete, which possesses functions of both a shrinkage reducing agent and a pozzolanic activator.

Studies on Carbonation of Concrete with Low-Calcium Fly Ash and Blast Furnace Slag (플라이 애쉬 및 고로수쇄(高爐水碎)슬래그를 혼화(混和)한 콘크리트의 중성화(中性化)에 관한 연구(研究))

  • Nagataki, Shigeyoshi;Kim, Eun Kyum;Ohga, Hiroyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.229-240
    • /
    • 1987
  • Carbonation of concrete is one type of a chemical process. The reaction mechanism is very complex for the case when low-calcium fly ash and blast furnace slag is added. When fly ash and blast furnace slag is used as an admixture in concrete, they improve compressive strength in the long term, permeability and chemical resistance of concrete by a pozzolanic reaction and latent hydraulic property. On the other hand, the pozzolanic reaction of fly ash and latent hydraulic property of the blast furance slag leads to a reduction of the alkalinity of the concrete. It has been pointed out that this will accelerate the carbonation of the concrete and the corrosion of reinforcement steel embedded in the concrete. In order to clarify the effect of fly ash and blast furance slag on the carbonation of concrete, an accelerated carbonation testing of concrete was carried out by varying the conditions of concrete and the initial curing period in water. The test results of accelerated carbonation were compared to the carbonation test results of concrete stored for 15 years in open air, but protected from rain. As a result, the equation for the rate of carbonation based on compressive strength of concrete was proposed.

  • PDF

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Concrete Resistance against the Penetration of Chloride Ions (혼화재 종류 및 치환율이 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Kim Young-Jin;Lee Sang-Soo;Kim Dong-Seuk;Yoo Jae-Kang
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.319-326
    • /
    • 2004
  • This paper investigates the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete replaced mineral admixtures for 3${\~}$4 replacement ratios under water-binder ratios ranged from 0.40 to 0.55. For the electro-migration test, Tang and Nilsson's method was used to estimate the diffusion coefficient of chloride ion. As a results, the water-binder ratios, kinds of mineral admixtures and replacement ratios, water curing periods had a great effect on the diffusion coefficient of chloride ion, and the optimal replacement ratios had a limitation for each mineral admixtures. Also, the use of mineral admixtures by mass(replacement of OPC) enhance the resistance ability against chloride penetration compared with the plain concrete. The compressive strength was shown related to the diffusion coefficient of chloride ion, the compressive strength increases with the diffusion coefficient of chloride ion decreasing. Below the 50 MPa, the variation of diffusion coefficient of concrete replaced mineral admixtures was bigger than that of plain concrete.

Assessment of Bond Characteristics between New and Old Concrete in Various Mixtures and Joint Conditions (배합 및 접합면 처리에 따른 신·구 콘크리트의 부착특성 평가)

  • Cho, Byeong-Du;Kim, Sang-Hyun;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.507-515
    • /
    • 2014
  • Although the construction joints of a concrete structure are properly treated with some measures, leakage has frequently occurred. A series of tests on the bond characteristics between new and old concrete were carried out in this study, assuming that the leakage at the construction joints has certain relationship with the bond of concrete. To assess the bond characteristics under various conditions, a number of specimens were made that have an interface between new and old concrete and bond strength, flexural strength and splitting tensile strength were measured. Main test variables are type and amount of mineral admixtures, treatment method of the interface and type of waterstops. In addition, the effects of placing interval between the concrete and of the age of the strength tests were investigated. The test results showed a slightly increased bond strength when applying mineral admixtures, which can be attributed to the interface filled with the calcium silicate hydrate that is formed by pozzolanic reaction. On the other hand, the bond strength was higher when the interface was treated rough and dry, and the roughness of a waterstop affected the bond capacity of the waterstop. Also, an assessment is required that considers the type of strength test because the bond strength varied according to the test methods.

Changes in Hydration and Watertightness of Cement Containing Two-Component Fluosilicate Salt Based Chemical Admixture (2성분 규불화염계 혼화제가 첨가된 시멘트의 수화반응 및 수밀성 변화)

  • Kim, Jae-On;Nam, Jae-Hyun;Kim, Do-Su;Khil, Bae-Su;Lee, Byoung-Ky
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.749-755
    • /
    • 2004
  • Fluosilicic acid ($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicate salts prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicate salts to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. In this study, two-component fluosilicate salt based chemical admixtures (MZ) of $4\%,\;6\%$, and $8\%$ concentration were prepared by the reaction of $H_2SiF_6$ ($25\pm2\%$) and metal salts. The effect of concentration of MZ at a constant adding ratio on the hydration and watertightness of cement were investigated respectively. In a cement containing MZ, metal fluorides such as $CaF_2$ and soluble silica by hydrolysis were newly formed during hydration. The total porosity of the hardened cement was lower in the presence of U because of packing role of metal fluoride and pozzolanic reaction of soluble $SiO_2$. Consequently, the watertightness of the hardened paste containing MZ was more improved than non-added (plain) due to an odd hydration between cement and MZ.