• Title/Summary/Keyword: Powertrain Vibration

Search Result 68, Processing Time 0.026 seconds

Optimal Design of Vehicle Engine Mount (차량 엔진마운트 최적 설계)

  • Kang, Koo-Tae;Won, Kwang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.361-368
    • /
    • 2001
  • This paper introduces optimization techniques to design engine mount properties for passenger vehicle. The design targets are divided into three cases such as optimal positioning of powertrain modes, minimizing vibration of deriver's seat in idling and driving conditions. The proper models, mechanisms of vibration, and characteristics of optimization problems are discussed.

  • PDF

Vibration Mode of the Drivesystem Considered the Vehicle Body's Dynamic Characteristics (차체의 동특성을 고려한 구동시스템의 진동모드)

  • 유충준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.148-159
    • /
    • 2004
  • This paper discusses vibration mode of the drivesystem considered the vehicle body's dynamic characteristics to study the influence of the vehicle body's dynamic characteristics on the vibration mode of the engine mount system and the ride quality of a vehicle. The simulation model consists of the engine mount system, the powertrain and the rigid or elastic vehicle body. Variables used in this study are the stiffnesses of an engine mount system and the excitation forces. The Goals of the study are analyzing both the vibration transmitted to the vehicle body including the drivesystem and the influence of the vehicle body's dynamic characteristics on the engine mount system. The mode of drivesystems with a rigid and a elastic vehicle body was compared. From the result of the forced vibration analysis for the drivesystem with a elastic vehicle body, it is shown that the vehicle body's dynamic characteristics influence on the engine mount system reciprocally.

An Improvement in Idle Sound Quality of a V8 engine (V8 엔진을 탑재한 차량의 아이들링 시의 음질 개선)

  • Suh, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.193-198
    • /
    • 2004
  • In order to keep the market competitiveness, it is desirable for automotive manufacturer to meet the customer's various aspects of requirements. The overall NVH (Noise, Vibration, and Harshness) performance has been an important measure when evaluating overall vehicle performance, product quality, and enhancing customers' loyalty to the product. The noise and vibration, while the engine is idling, has been brought particular attention to the drivers and passengers, because they encounter the operation conditions quite frequently without other masking noise sources: wind noise, road noise, and even powertrain radiated noise at higher speed driving. The specific noise, defined as 'CHIT' noise, has been identified as a potential customer issue, from the Pickup Truck with newly developed V8 powertrain. This paper describes the definition of the noise, identifying the potential sources, and noise radiation mechanisms, based on series of powertrain and vehicle test and verification processes. Then, based on the root-cause identified, the design change has been proposed and validated with several vehicles in order to have a complete satisfaction of the customer.

  • PDF

Prediction of the noise radiated by the structural vibration of a powertrain (파워트레인 구조진동으로 인한 방사소음 예측에 관한 연구)

  • Oh, Ki-Seok;Lee, Sang-Kwon;Kim, Sung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.891-896
    • /
    • 2007
  • Noise radiated from the powertrain is an important factor of the vehicle interior noise. In this paper, Finite Element(FE) model and Boundary Element(BE) models were created. The FE model was updated by doing a correlation between experimental modal analysis(EMA) values and finite element analysis(FEA) values. Main bearing forces were calculated using a running modal data. The forced vibration analysis was simulated using the software MSC/NASTRAN, and the radiated noise was predicted using the software LMS/VIRTUAL.LAB.

  • PDF

Vibration Theory to Design Engine Mount System of Powertrain (파워트레인 마운트계 설계를 위한 진동 이론)

  • Won, K.M.;Yoon, H.W.;Bang, J.H.;Kang, K.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1907-1911
    • /
    • 2000
  • In this paper, classical vibration theories are summarized to design engine mount system of passenger vehicles. The vibrational characteristics of powertrain system and its equation of motion are introduced. Based upon the equation, the concept of the center of gravity, the principle inertia axis, the elastic center, and the elastic axis are defined and some new concepts are suggested. The theory of mode decoupling and the relationship between TRA (Torque Roll Axis) and roll mode are also reexamined to support the design concept of engine mount systems.

  • PDF

Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers (클러치 댐퍼용 원심 진자 흡진기의 비틀림 진동 절연 성능 평가)

  • Song, Seong-Young;Shin, Soon-Cheol;Kim, Gi-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • This paper presents the torsional vibration isolation performance evaluation of a centrifugal pendulum absorbers (CPAs) that has a continuously varying resonance frequencies proportional to engine firing (excitation) order. CPAs are commonly used to suppress torsional vibrations in rotating machinery and internal combustion engines. In this study, they are employed on the current spring type torsional damper inside a torque converter of automotive vehicle. To evaluate the effectiveness of designed resonance tuning order, the torsional vibration transmissibility based on torque measurements with respect to different engine firing orders is experimentally measured with a lower-inertia dynamometer. The torsional vibration transmissibility with respect to different frequencies with engine order of 2 is also evaluated. It has been demonstrated that the significant vibration reduction over operational frequency range of interest can be achieved by attaching simple pendulums. Future research direction includes the study on theoretical analysis, improved design of pendulum etc.

An Experimental Study on the Vibration Reduction of the 4WD Vehicle by the Engine Mounting Conditions (엔진장착조건에 따른 4WD 자동차의 진동저감에 대한 실험적 연구)

  • Sa, J.S.;Kim, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.24-32
    • /
    • 1994
  • This paper is the experimental study on the vibration reduction of the 4WD vehicle through the change of the engine mounting conditions.(4 stroke diesel engine) The engine mounting conditions are changed to reduce the transmitted vibrations of the engine to the frame at the idle speed. Under the assumption that the Powertrain(Engine Transmission and Transfer Case) is a rigid body, the inertia properties of the powertrain are obtained by experimental modal analysis. And then the changed mounting conditions are studied by the decoupled vibration theory and analytical model of six degree of freedom. Though the mounting conditions are changed to improve the vibration isolation at idle speed, the vibration and the interior noise of the vehicle are reduced significantly at driving speed as well as idle speed. From the indirect endurance test of the front engine mounts, the changed mounting conditions are desirable to endurance as well as vibration reduction of the 4WD vehicle.

  • PDF

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

Vehicle Interior Noise Analysis Using Frequency Response Function Based Substructural Method (주파수응답함수의 부분구조합성 법을 이용한 차 실내소음 예측)

  • 허덕재;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2001
  • This paper presents the simulation methodology of the interior noise of vehicle using the frequency response function based hybrid modeling of the system which consists of multi-subsystem models obtained by the test or analysis. The complex systems such as a trimmed body of high modal density and a powertrain were modeled by using experimental data, and a sub-frame of a vehicle of low modal density was modeled by finite element data. Modeling of the whole system was executed and validated in the two stages. The first stave is combining the trimmed body and the sub-frame, and the second stage is attaching the powertrain, which is a exciting source, to the combined model of the first stage. The input force to the system was modeled as an equivalent force in the virtual space, which was obtained from impedance method using the FRFs of the powertrain and the responses. The interior noise predicted by the proposed method was very close to the direct measurement, which showed feasibility of the proposed modeling procedure. Since the methodology is easily applied to both the transfer path analysis of structure-borne noise and the analysis of noise contribution of a sub-system, it is expected to be a strong tool for design change of a vehicle in the earlier stare.

  • PDF