• Title/Summary/Keyword: PowerFlow

Search Result 6,142, Processing Time 0.027 seconds

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.

고출력 Fast-Axial-Flow $CO_2$ Laser 제작 Development of High Power Fast-Axial Flow $CO_2$ Laser

  • 신동주
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.39-42
    • /
    • 1989
  • The limitations of high-power electrical lasers due to heating of the gas and the instability of the glow discharge can be alleviated by the flow of the lasing medium. In order to achieve high power and efficient laser, we are developing a fast-axial flow CO2 laser. We describe here the classification of gas-discharge CO2 lasers according to the cooling methods of the lasing medium and the design features of the fast-axial flow CO2 laser.

  • PDF

Design and analysis of a free-piston stirling engine for space nuclear power reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.637-646
    • /
    • 2021
  • The free-piston Stirling engine (FPSE) has been widely used in aerospace owing to its advantages of high efficiency, high reliability, and self-starting ability. In this paper, a 20-kW FPSE is proposed by analyzing the requirements of space nuclear power reactor. A code was developed based on an improved simple analysis method to evaluate the performance of the proposed FPSE. The code is benchmarked with experimental data, and the maximum relative error of the output power is 17.1%. Numerical results show that the output power is 21 kW, which satisfies the design requirements. The results show that: a) reducing the pressure shell's thickness can improve the output power significantly; b) the system efficiency increases with the wire porosity, while the growth of system efficiency decreases when the porosity is higher than 80%, and system efficiency exhibits a linear relationship with the temperatures of the cold and hot sides; c) the system efficiency increases with the compression ratio; the compression ratio increases by 16.7% while the system efficiency increases by 42%. This study can provide valuable theoretical support for the design and analysis of FPSEs for space nuclear power reactors.

Experimental study of turbulent flow in a scaled RPV model by PIV technology

  • Luguo Liu;Wenhai Qu;Yu Liu;Jinbiao Xiong;Songwei Li;Guangming Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2458-2473
    • /
    • 2024
  • The turbulent flow in reactor pressure vessel (RPV) of pressurized water reactor (PWR) is important for the flow rate distribution at core inlet. Thus, it is vital to study the turbulent flow phenomena in RPV. However, the complicated fluid channel consisted of inner structures of RPV will block or refract the laser sheet of particle image velocimetry (PIV). In this work, the matched index of refraction (MIR) of sodium iodide (NaI) solution and acrylic was applied to support optical path for flow field measurements by PIV in the 1/10th scaled-down RPV model. The experimental results show detailed velocity field at different locations inside the scaled-down RPV model. Some interesting phenomena are obtained, including the non-negligible counterflow at the corner of nozzle edge, the high downward flowing stream in downcomer, large vortices above vortex suppression plate in lower plenum. And the intensity of counterflow and the strength of vortices increase as inlet flow rate increasing. Finally, the case of asymmetry flow was also studied. The turbulent flow has different pattern compared with the case of symmetrical inlet flow rate, which may affect the uniformity of flow distribution at the core inlet.

Experimental Analysis of Flow Fields inside Intake Heads of a Vacuum Cleaner

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.894-904
    • /
    • 2005
  • The flow structure inside the intake head greatly affects the working efficiency of a vacuum cleaner such as suction power and aero-acoustic noise. In this study, the flow inside intake heads of a vacuum cleaner was investigated using qualitative flow visualization and quantitative PIV (Particle Image Velocimetry) techniques. The aerodynamic power, suction efficiency and noise level of the intake heads were also measured. In order to improve the performance of the vacuum cleaner, inner structure of the flow paths of the intake head, such as trench height and shape of connection chamber were modified. The flow structures of modified intake heads were compared with that of the original intake head. The aero-acoustic noise caused by flow separation was reduced and the suction efficiency was also changed due to flow path modification of intake head. In this paper, the variations of flow fields for different intake heads are presented and discussed together with results of aerodynamic power, suction efficiency and noise level.

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

Flow blockage analysis for fuel assembly in a lead-based fast reactor

  • Wang, Chenglong;Wu, Di;Gui, Minyang;Cai, Rong;Zhu, Dahuan;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3217-3228
    • /
    • 2021
  • Flow blockage of the fuel assembly in the lead-based fast reactor (LFR) may produce critical local spots, which will result in cladding failure and threaten reactor safety. In this study, the flow blockage characteristics were analyzed with the sub-channel analysis method, and the circumferentially-varied method was employed for considering the non-uniform distribution of circumferential temperature. The developed sub-channel analysis code SACOS-PB was validated by a heat transfer experiment in a blocked 19-rod bundle cooled by lead-bismuth eutectic. The deviations between the predicted coolant temperature and experimental values are within ±5%, including small and large flow blockage scenarios. And the temperature distributions of the fuel rod could be better simulated by the circumferentially-varied method for the small blockage scenario. Based on the validated code, the analysis of blockage characteristics was conducted. It could be seen from the temperature and flow distributions that a large blockage accident is more destructive compared with a small one. The sensitivity analysis shows that the closer the blockage location is to the exit, the more dangerous the accident is. Similarly, a larger blockage length will lead to a more serious case. And a higher exit temperature will be generated resulting from a higher peak coolant temperature of the blocked region. This work could provide a reference for the future design and development of the LFR.

Experiment investigation on flow characteristics of open natural circulation system

  • Qi, Xiangjie;Zhao, Zichen;Ai, Peng;Chen, Peng;Sun, Zhongning;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1851-1859
    • /
    • 2022
  • Experimental research on flow characteristics of open natural circulation system was performed, to figure out the mechanism of the open natural circulation behaviors. The influence factors, such as the heating power, the inlet subcooled and the level of cooling tank on the flow characteristics of the system were examined. It was shown that within the scope of the experimental conditions, there are five flow types: single-phase stable flow, flash and geyser coexisting unstable flow, flash stable flow, flash unstable flow, and flash and boiling coexisting unstable flow. The geyser flow in flash and geyser coexisting unstable flow is different from classic geysers flow. The flow oscillation period and amplitude of the former are more regular, is a newly discovered flow pattern. By drawing the flow instability boundary diagram and sorting out the flow types, it is found that the two-phase unstable flow is mainly characterized by boiling and flash, which determine the behavior of open natural circulation respectively or jointly. Moreover, compared with full liquid level system, non-full liquid level system is more prone to boiling phenomenon, and the range of heat flux density and undercooling degree corresponding to unstable flow is larger.

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.