• Title/Summary/Keyword: Power-to-weight

Search Result 2,016, Processing Time 0.037 seconds

The Effect of Power Change on the Upper·Low Extremity Application of Weight Training (웨이트 트레이닝의 상·하지적용이 순발력 변화에 미치는 영향)

  • Park, Kanghui;Kim, Hyoungsu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • Purpose: This study was conducted to investigate out the effects of power by body application of weight training that can increase vertical jump, standing long jump, and medicine ball throw that are important factors for power ability. Methods: Sixteen in normal adult were participated in this study. The subjects were divided into the upper limb weight training group(N=16), the lower limb weight training group(N=16) and they exercised during a four-week period of time, three times a week, 70 minutes each, and the each group did take part in any exercise program. To evaluate the changes in power were measured by using the vertical jump, standing long jump, and medicine ball throw. The data was analyzed with a SPSS 18.0 program. Results: The results showed that the vertical jump, standing long jump were significantly increased in the upper limb weight training group(p<.01) and medicine ball throw was significantly increased in the both group(p<.05). However, there were that showed not significantly differences in all power items between two groups after experiment(p>.05). Conclusion: It was concluded that the weight training were effective in enhancing the power ability. Also, can be considered effective the better lower limb weight training group than upper limb weight training group.

Revision of Representative Truck's Weight to Power Ratio in S. Korea (우리나라 대표 트럭의 총중량/엔진성능 재정립)

  • Kim, Young Rok;Jeong, Jun Hwa;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The purpose of this study is to revise the weight to power ratio of the representative truck in S. Korea. So far, S. Korea has been using the unit lb/hp, and the construction machines were not considered in the evaluation of the performance of trucks. METHODS : This study was performed to recommend the use of ISO system of units, and to analyze the weight to power ratios of the representative trucks in S. Korea, including the dump trucks, concrete mixer trucks, and asphalt and concrete diffusers. RESULTS: From this study, the 85 percentile value of the weight to power ratio of the trucks in S. Korea's was found to be 103.6 kg/kw. CONCLUSIONS : The performance standard for the representative truck has to be increased upward, considering the travel pattern of the dump trucks, concrete mixers, and asphalt and concrete diffuser trucks, travel distances, narrow area (work zone) of operation, and the saving in construction budget for climbing lane. Based on this study, the weight to power ratio of the representative truck in S. Korea could possibly be revised to 100~110 kg/kW.

Difference of holding power of concrete weight used in shellfish shell fishery by its shape characteristics (패류껍질어업에서 사용 중인 멍의 형태적 특성에 따른 고정력의 차이)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the differences of holding power according to the shape and weight distribution of concrete weight used in shellfish shell fishery were investigated through the experiments. To investigate the differences in shape, five bar-shaped concrete weights with the same length and different cross-sectional shapes were produced. The sectional shape of each weight was square, triangle, circle, small cross, and large cross (SQ, TR, CI, CR-S, CR-L). Ten rectangular parallelepiped weights with different bottom area and cross-sectional area were produced. To investigate the differences by the weight distribution, the holding power on the square model (SQ) with six 50 g weights at different positions was investigated. All the holding power was obtained by measuring the tensile force generated when the concrete weight was pulled at a constant speed on the sand. As a result, there were no differences in holding power between the ten rectangular weights. However, the experiment on weights with different cross-sectional shapes showed differences in holding power. The holding power was higher in the order of CR-L > CR-S > CI > TR > SQ. In the weight distribution test, the holding power was higher as the front side of the weight was heavier. Generally, the frictional force is the same even if the shape is different, when two objects have the same value in the weight and the roughness. On the other hand, it seems to have a large impact when the shape of the bottom is deformed in the course of pulling the object. Particularly, the larger the degree of protrusion like cruciform weights, the more the holding power increased while deeply digging the bottom. It is also likely that the holding power increases as the front weight increases.

Audio fingerprint matching based on a power weight (파워 가중치를 이용한 오디오 핑거프린트 정합)

  • Seo, Jin Soo;Kim, Junghyun;Kim, Hyemi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.716-723
    • /
    • 2019
  • Fingerprint matching accuracy is essential in deploying a music search service. This paper deals with a method to improve fingerprint matching accuracy by utilizing an auxiliary information which is called power weight. Power weight is an expected robustness of each hash bit. While the previous power mask binarizes the expected robustness into strong and weak bits, the proposed method utilizes a real-valued function of the expected robustness as weights for fingerprint matching. As a countermeasure to the increased storage cost, we propose a compression method for the power weight which has strong temporal correlation. Experiments on the publicly-available music datasets confirmed that the proposed power weight is effective in improving fingerprint matching performance.

Performance Trend of Korean-made Agricultural Tractors (국산 트랙터의 성능 변화)

  • Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.321-326
    • /
    • 2005
  • Tractor performance was analyzed using the data from 226 Korean-made and 107 imported tractors tested at the National Institute of Agricultural Engineering for the 25-year period from 1980 through 2004. The performance analysis included the specific volumetric fuel consumption (svfc), power per unit weight and traction coefficient evaluated from the viewpoint of PTO power level. No significant performance improvement has been made for the Korean-made tractors over the last 25 years. The average svfc for the maximum PTO power has increased by only $2.1\%$ from 1980 to 2004, resulting in 2.86 kW${\cdot}$h/L in 2004. The average maximum PTO and drawbar power per unit weight of ballasted tractors were 1.38 and 1.19 kW/kN in 2000-2004, indicating $14.0\%$ and $5.9\%$ decreases respectively from 1980 to 2004. The traction coefficient has increased by $23.1\%$ over the 25 years, resulting in 0.68 in the 2000-2004 period. Poor performance improvement was also observed from the imported tractors. In the 2000-2004 period, average svfc for the maximum PTO power, PTO power per unit ballasted weight, drawbar power per unit ballasted weight and traction coefficient of the imported tractors were respectively 3.0 kW${\cdot}$h/L, 1.34 kW/kN, 1.13 kW/kN and 0.68. PTO and drawbar power per unit weight were lower in imported tractors than the Korean-made tractors. Comparing the test results with those of tractors less than 37 kW tested at the Nebraska Tractor Test Laboratory from 1981 to 2002, the Korean-made tractors have exhibited better performance in terms of power per unit weight. However, poor performance in the svfc and traction coefficient was observed. The average svfc and traction coefficient of the Korean-made tractors were respectively $86.4\%$ and $83.7\%$ of the tractors tested at the NTTL over the same period.

The Study on Miniaturization and Weight Reduction of Auxiliary Power Unit in Magnetic Levitation Train

  • Lee, Na Ri;Shin, Hee Keun;Choi, Sung Ho;Kim, Ju Bum;Lim, Jae Won;Park, Doh Young;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • Due to the characteristics of the vehicle structure, the magnetic levitation train has a confined bottom space thus a study on miniaturization and weight reduction of auxiliary power unit is essential. This auxiliary power unit is an essential device used for illumination, air conditioning, heating and air brake equipment excluding the motor. The previous auxiliary power unit for magnetic levitation train has used the hard switching having a high switching frequency with heavy loss in order to reduce the size of filter reactor and transformer but the reduction in volume was not significant. In this paper, by reducing the loss, reducing the size of the cooling unit and by increasing the switching frequency using the soft switching of resonant converter, it has miniaturized and reduced the weight of filter reactor and transformer which occupy significant space in the auxiliary power unit. This study has verified the performance of 50KVA grade prototype through simulated interpretation and analysis, and compared the size and weight of auxiliary power unit of the previous magnetic levitation train.

Development of a Novel Charging Algorithm for On-board ESS in DC Train through Weight Modification

  • Jung, Byungdoo;Kim, Hyun;Kang, Heechan;Lee, Hansang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1795-1804
    • /
    • 2014
  • Owing to the reduction in the peak power of a DC railway subsystem, many studies on energy storage system (ESS) applications have received attention. Each application focuses on improving the efficiency and addressing regulation issues by utilizing the huge regenerative energy generated by braking-phase vehicles. The ESS applications are widely divided into installation on a vehicle or in a substation, depending on the target system characteristics. As the main purpose of the ESS application is to reduce the peak power of starting-phase vehicles, an optimized ESS utilization can be achieved by the operating at the highest peak power section. However, the weight of an entire vehicle, including those of the passengers, continuously changes during operation; thus, considering the total power consumption and the discharging point is difficult. As a contribution to the various storage device algorithms, this study deals with ESS on board vehicles and introduces an ESS operating plan for peak-power reduction by investigating the weight of a train on a real-time basis. This process is performed using a train-performance simulator, and the simulation accuracy can be increased because the weight in each phase can be adopted in the simulation.

Comparative Analysis of 10 MW Superconducting Wind Power Generators with Three-phase and Nine-phase Armature Windings

  • Kim, Taewon;Woo, Sang-Kyun;Sung, Hae-Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.343-347
    • /
    • 2019
  • When referring to weight, volume, and efficiency, a SuperConducting Synchronous Generator (SCSG) is definitely superior to conventional generators as a large-scale wind power generation system. The SCSG is connected to a full power converter that transmits the energy from the SCSG to the power grid. To reduce the current stress and system cost, the SCSG which has nine-phase armature windings with three converters is used. This paper deals with a comparative analysis of 10 MW superconducting wind power generators with three-phase and nine-phase armature windings. The stator windings of SCSGs are of various types. Using the finite element method, SCSGs are analyzed and compared in terms of the weight and volume of SCSGs, the total length of the superconducting wire, harmonics, torque performance, and efficiency. The analyzed results will be effectively utilized to design large-scale superconducting generators for wind power generation systems.

Comprehensive Evaluation of Impacts of Connecting Distributed Generation to the Distribution Network

  • Jin, Wei;Shi, Xuemei;Ge, Fei;Zhang, Wei;Wu, Hongbin;Zhong, Chengyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.621-631
    • /
    • 2017
  • In this paper, we study the various impacts of connecting distributed generation (DG) to the distribution network. The comprehensive evaluation index system (CEIS) of four hierarchies is established, considering economy, reliability and voltage quality, and the calculation methods of different indexes are presented. This paper puts forward an improved triangular fuzzy number analytic hierarchy process (ITFNAHP) to weight the second level indexes (SLI) and the third level indexes (TLI), and calculates the variation coefficient to weight the fourth level indexes (FLI). We calculate the comprehensive weight coefficients based on the weight coefficients of the SLI, TLI and FLI, and then calculate the comprehensive evaluation of satisfaction (CES) of different access schemes. On the basis of the IEEE 33-bus example system, simulations of the calculation methods and the comprehensive evaluation method are carried out under different DG access schemes according to the same total investment cost and the same permeability, respectively, and the simulation results are analyzed and discussed.

Study on Gravitational Torque Estimation and Compensation in Electrically Driven Satellite Antenna System (전기식으로 구동하는 위성안테나 시스템의 중력토크 추정 및 보상에 관한 연구)

  • Kim, Gwang Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2016
  • The weight of an antenna system pointing satellite on the mobile platform is restricted by the weight limit of the mobile platform. The maximum power of the actuator driving the antenna system is thus limited because a high power actuator needs a heavier weight. Thus, a drive system is designed to have a low torque requirement by reducing the gravitational torque depending on gravity or acceleration of the mobile platform, including vibration, shock, and accelerated motion. To reduce the gravitational torque, the mathematical model of the gravitational torque is preferentially obtained. However, the method to directly estimate the mathematical model in an antenna system has not previously been reported. In this paper, a method is proposed to estimate the gravitational torque as a mathematical model in the antenna system. Additionally, a method is also proposed to calculate the optimal weight of the balancing weight to compensate for the gravitational torque.