• Title/Summary/Keyword: Power-hardware-in-the-loop

Search Result 164, Processing Time 0.427 seconds

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

The Performance Test of Digital PSS Using KEPCO Enhanced Pourer System Simulator(KEPS) (실시간 대규모 전력계통 해석용 시뮬레이터(KEPS)를 이용한 국산 디지털 PSS의 성능 시험)

  • 신정훈;김태균;추진부;백영식
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.12
    • /
    • pp.611-623
    • /
    • 2002
  • This paper introduce the real time digital simulator which is located in Korea Electric Power Research Institute. This paper also describes the methodology for the performance test of the PSS using KEPS. This test is to get a high degree of the confidence of the developed PSS before it is installed into the real power system. This has been performed in the form of closed-loop tests in which Simulator and PSS are connected and signals come and back interactively. Many tests have successfully done using KEPS which consists of 26 RTDS racks, under the large-scale power system. The simulated reduced KEPCO power system contains 88 generators and 295 buses. Through the AVR step, three phase fault and active power variation test, the effectiveness of developed PSS has been proved. This paper also presents the overview of KEPS and hardware of protype PSS.

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

Design and control performance validation of HILS system based on MATLAB/Simulink (MATLAB/Simulink기반 HILS 환경 구축 및 제어 성능 검증)

  • Min-Woo Ham;Insu Paek
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2024
  • In this study, a hardware-in-the-loop simulation (HILS) environment was established using MATLAB/Simulink to simulate and verify the power performance of a wind turbine. The target wind turbine was selected as the NREL 5 MW model, and modeling was performed based on the disclosed specifications. The HILS environment consists of a PC equipped with a MATLAB/Simulink program, a programmable logic controller (PLC) for uploading and linking control algorithms, and data acquisition (DAQ) equipment to manage wind turbine data input and output. The operation of the HILS environment was carried out as a procedure of operation (PC) of the target wind turbine modeled based on MATLAB/Simulink, data acquisition (PLC) of control algorithms, control command calculation (PLC), and control command input (PC). The simulation was performed using the HILS environment under turbulent wind conditions and compared with the simulation results performed under the same conditions in the HILS environment using the commercial program Bladed for performance verification. From the comparison, it was found that the dynamic simulation results of the Bladed HILS and the MATLAB HILS were close in power performances and the errors in the average values of rotor rotation speed and power generation between the two simulations were about 0.44 % and 3.3 %, respectively.

Dynamic Reference-based Voltage Droop Control for VSC-MTDC System

  • Kim, Nam-Dae;Kim, Hak-Man;Park, Jae-Sae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2249-2255
    • /
    • 2015
  • The use of voltage source converter multi-terminal direct current (VSC-MTDC) systems is anticipated to increase from the introduction of wind farms and super grids in the near future. Effective control of the DC voltage in VSC-MTDC systems is an important research topic. This paper proposes a new dynamic reference-based voltage droop control to control the DC voltage in VSC-MTDC systems more effectively. The main merit of the dynamic reference-based voltage droop control is that it can reduce the steady-state error in conventional voltage droop control by changing references according to the system operating conditions. The performance of the proposed control was tested in a hardware-in-the-loop simulation (HILS) system based on the OPAL-RT real-time digital simulator and four digital signal processing boards.

Online DCIR Estimation for Series-connected Battery Cells using Matrix-Switched Capacitor Converter

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.381-382
    • /
    • 2020
  • In the battery energy storage system, battery cells are connected in series to increase the operating voltage. Due to the difference in characteristics, the performance degradation of cells is dissimilar. This paper proposes an online DC internal impedance estimation for battery cells in the series string using a matrix-switched capacitor converter, which is already verified as useful for the series balancing of the cells. The simulation in the hardware in the loop test rig shows good accuracy and the feasibility of the proposed method.

  • PDF

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system (선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발)

  • Ahn, Jong-Woo;Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.582-588
    • /
    • 2013
  • Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.

Development of ABS ECU for a Bus using Hardware In-the-Loop Simulation

  • Lee, K.C.;Jeon, J.W.;Nam, T.K.;Hwang, D.H.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1714-1719
    • /
    • 2003
  • Antilock Brake System (ABS) is indispensable safety equipment for vehicles today. In order to develop new ABS ECU suitable for pneumatic brake system of a bus, a Hardware In-the-Loop Simulation (HILS) System was developed. In this HILS, the pneumatic brake system of a bus and antilock brake component were used as hardware. For the computer simulation, the 14-Degree of Freedom (DOF) bus dynamic model was constructed using the Matlab/Simulink software package. This model was compiled and downloaded in the simulation board, where the Power PC processor was used for real-time simulation. Additional commercial package, the ControlDesk was used to monitor the dynamic simulation results and physical signal values. This paper will focus on the procedure and results of evaluating the ECU in the HILS simulation. Two representative cases, wet basalt road and $split-{\mu}$ road, were used to simulate real road conditions. At each simulated road, the vehicle was driven and stopped under the help of the developed ECU. In each simulation, the dynamical behavior of the vehicle was monitored. After enough tests in the laboratory using HILS, the parameter-tuned ECU was equipped in a real bus, which was driven and stopped in the real test field in Korea. And finally, the experiment results of ABS equipped vehicle's dynamic behavior both in HILS test and in test fields were compared.

  • PDF

Model Based Design and Validation of Vehicle Safety Power Window Control Systems (자동차 Safety Power Window 제어시스템의 모델기반 설계 및 검증)

  • Lee, Do-Hyun;Kim, Byeong-Woo;Choi, Jin-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2298-2305
    • /
    • 2010
  • The paper presents the Model Based Design(MBD) method which design and verify control algorithm for safety power window. Safety power window are required to work together with the anti-pinch function and have to meet FMVSS118 S5 requirements and equivalent ECC requirements. To meet the requirements, this paper presents the establishment of SILS and RCP environments. The design process can reduce time and support more performance-assured design. As a result of study, it met the regulations and achieved reaction force that close to common products.

Study on Active Power Filter using Real-time Hardware In the Loop Emulator

  • Zhang, Ying-hao;Oh, Hyoung-lok;Lim, Han-jun
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.132-133
    • /
    • 2014
  • This paper presents an algorithm for an active power filter which can be used in both single-phase and three-phase electric system. The proposed algorithm focuses on the extraction of harmonic component of load current in each phase and in order to verify the validity of the proposed algorithm while loads are nonlinear, simulations have been done by PLECS software and tested by typhoon-HIL which is real time emulator.

  • PDF