• 제목/요약/키워드: Power-Spectral-Density

검색결과 471건 처리시간 0.029초

Two-Microphone Generalized Sidelobe Canceller with Post-Filter Based Speech Enhancement in Composite Noise

  • Park, Jinsoo;Kim, Wooil;Han, David K.;Ko, Hanseok
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.366-375
    • /
    • 2016
  • This paper describes an algorithm to suppress composite noise in a two-microphone speech enhancement system for robust hands-free speech communication. The proposed algorithm has four stages. The first stage estimates the power spectral density of the residual stationary noise, which is based on the detection of nonstationary signal-dominant time-frequency bins (TFBs) at the generalized sidelobe canceller output. Second, speech-dominant TFBs are identified among the previously detected nonstationary signal-dominant TFBs, and power spectral densities of speech and residual nonstationary noise are estimated. In the final stage, the bin-wise output signal-to-noise ratio is obtained with these power estimates and a Wiener post-filter is constructed to attenuate the residual noise. Compared to the conventional beamforming and post-filter algorithms, the proposed speech enhancement algorithm shows significant performance improvement in terms of perceptual evaluation of speech quality.

다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법 (Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition)

  • 강경원;이경민;칼렙;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

2중판 오리피스를 이용한 기액 2상유량계의 개발 (Development of a 9as-liquid two-phase flowmeter using double orifice plates)

  • 이상천;이상무;남상철
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.619-629
    • /
    • 1998
  • An experimental work was conducted to investigate a feasibility of simultaneous measurement of gas-liquid two-phase flowrates with double orifice plates using air and water. The tests were carried out under the atmospheric pressure and at the ambient temperature using two different tube sizes. Qualities of an air-water flow in the present study have values less than 0.1 and thus the mixed flow showed bubbly, plug, slug flow regimes. The probability density function (PDF) and the power spectral density function (PSDF) of the instantaneous pressure drop traces for the flow regimes were obtained. It is found that some distinctive features exist in the distribution of these functions, depending upon the two-phase flow pattern. The time-averaged value of the instantaneous pressure drop increases with increasing gas and liquid flowrates, showing a single-valued function for the total mass flowrate and the quality. It is also found that the two-phase discharge coefficient exhibits a consistent trend for variation of dimensionless parameters such as the superficial velocity ratio and the gas Reynolds number. The results indicate that simultaneous measurement of two-phase flowrate may be possible based upon a statistical analysis of the instantaneous pressure drop curves monitored using double orifice plates.

  • PDF

유도무기의 신뢰성 향상을 위한 비행환경 모사시험 방안 연구 (Flight Environment Simulation Test for Reliability Improvement of Precise Guided Missile)

  • 최승혁
    • 한국정밀공학회지
    • /
    • 제33권10호
    • /
    • pp.781-787
    • /
    • 2016
  • We introduce FEST (Flight Environment Simulation Test) procedures for precise guided missiles to reliably improve systems. Flight vibration specification was established based on power spectral density curves calculated from flight test data of a high speed precise guided missile. A FEST pre-profile was developed according to flight vibration specification and delivered to a precise guided missile assembly. Vibration responses were measured by installing accelerometers on electronic components vulnerable to dynamic forces. The FEST profile was adjusted by comparing the vibration responses and the flight vibration specification. Subsequently, the FEST profile was repeatedly modified through trial and error, because the responses were similar to the flight environment. The modified FEST profile enabled performance testing of assembled precise guided missiles under simulated flight conditions on the ground, where unexpected errors could be corrected before the flight tests, leading to cost and risk reduction in the development of the precise guided missile system.

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

주성분 분석(PCA)에 의한 항공기 왕복 엔진의 구조 건전도 모니터링 (Structural Health Monitoring of Aircraft Reciprocating Engine Based on Principal Component Analysis (PCA))

  • 김지환;박성은;이형철
    • 항공우주시스템공학회지
    • /
    • 제6권1호
    • /
    • pp.13-18
    • /
    • 2012
  • This paper presents a structural health monitoring method of aircraft reciprocating engine using Principal Component Analysis (PCA) which analyzes vibration expressed by Averaged Normalized Power Spectral Density (ANPSD). Because ANPSD of the rotating shaft is sensitive to the rotating speed, this paper proposes to use a post-processing method of ANPSD is used to reduce the sensitivity. The PCA extracts compressed information from the post-processed ANPSDs and the information means the difference between current and normal cases of the engine. The experimental results demonstrate the feasibility and effectiveness of the proposed method to detect abnormal cases of the engine.

초음파 에너지로 제조한 유화연료의 관로 흐름 특성에 관한 연구 (A Study on the Flow Characteristics of Emulsified Fuel by the Ultrasonic Energy in Tube)

  • 고경한;이승진;이병오;류정인
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1248-1256
    • /
    • 2005
  • This study was undertaken to investigate the flow characteristics of emulsified fuel with the ultrasonic energy-adding system by using the chaotic method. Efffcts of water contents within emulsified fuel, flow rate and tube length with 5m in diameter from an emulsified chamber has been discussed on the strange attractor and power spectral density function. Five probe sensors were set up from 0.5 to 2.5m by length in 0.5m increments in the tube. In particular, the chaotic features of this system have been practically characterized in terms of chaotic statistics such as the power spectral density function and phase space portraits by resorting to the somewhat noble deterministic chaos theory. In the tube, the dominant frequency increased with increasing water contents and flow rate, but decreased a little with an increase in the length from the emulsified chamber.

A STUDY ON NONSTATIONARY RANDOM VIBRATION OF A VEHICLE IN TIME AND FREQUENCY DOMAINS

  • Zhang, L.J.;Lee, C.M.;Wang, Y.S.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.101-109
    • /
    • 2002
  • A time domain method for solving nonstationary random vibration caused by vehicle acceleration is first proposed in which a time changing model is established for representing nonstationary excitation of a rough road. Furthermore a novel frequency domain method called the transient power spectral density with spatial frequency (TPSD) is presented to obtain a response of vehicle system in frequency domain. This method has been proved to be valid by comparing numerical results with the exact solution.

불규칙 매개변수 가진을 받는 동적시스템의 안정성 해석 (Stability Analysis of a Dynamic System under Random Parametric Excitation)

  • 허훈;조윤현;양재혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.55-59
    • /
    • 1997
  • Investigation is performed on the stability of general form of dynamic system whose damping and stiffness are varying in irregular manner along time, which is a preliminary result in the course of research on the characteristic and the control of the stochastic system. The governing equation of the 'parametric' system is derived via F-P-K approach in stochastic sense. The influence on the stability due to the magnitude of auto power spectral density and cross power spectral density of random variation of system parameters is studied and the region is surveyed.

  • PDF

DYNAMIC CHARACTERISTICS OF CYLINDRICAL SHELLS CONSIDERING FLUID-STRUCTURE INTERACTION

  • Jhung, Myung-Jo;Kim, Wal-Tae;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1333-1346
    • /
    • 2009
  • To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect.