• Title/Summary/Keyword: Power-Saving

Search Result 1,284, Processing Time 0.026 seconds

Power Saving Algorithm based on Data Reuse in Tree Structured Wireless Sensor Networks (트리 구조 무선 센서 네트워크에서의 데이터 재사용 기반의 전력 절감 기법)

  • Lee, Sang-Hyun;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.649-658
    • /
    • 2009
  • Due to limited size and limited battery lifetime of sensor node, one has to address the power saving issue in wireless sensor network. The existing power saving algorithm based on data reuse was proposed for the cluster structured wireless sensor network. We state the problem of existing power saving algorithm and propose new power saving algorithm for tree structured wireless sensor network. The proposed algorithm reduces power consumption by buffering the sensed data at the selected relay node for its data lifetime. The optimum buffering node is selected so that the power saving gain is maximized and at the same time, power consumption among sensor nodes are equally distributed in the network. With computer simulations, it is shown that the proposed algorithm outperforms the conventional algorithm in terms of power saving gain.

GreenIoT Architecture for Internet of Things Applications

  • Ma, Yi-Wei;Chen, Jiann-Liang;Lee, Yung-Sheng;Chang, Hsin-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.444-461
    • /
    • 2016
  • A power-saving mechanism for smartphone devices is developed by analyzing the features of data that are received from Internet of Things (IoT) sensors devices to optimize the data processing policies. In the proposed GreenIoT architecture for power-saving in IoT, the power saving and feedback mechanism are implemented in the IoT middleware. When the GreenIoT application in the power-saving IoT architecture is launched, IoT devices collect the sensor data and send them to the middleware. After the scanning module in the IoT middleware has received the data, the data are analyzed by a feature evaluation module and a threshold analysis module. Based on the analytical results, the policy decision module processes the data in the device or in the cloud computing environment. The feedback mechanism then records the power consumed and, based on the history of these records, dynamically adjusts the threshold value to increase accuracy. Two smart living applications, a biomedical application and a smart building application, are proposed. Comparisons of data processed in the cloud computing environment show that the power-saving mechanism with IoT architecture reduces the power consumed by these applications by 24% and 9.2%.

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.

Utility AC Frequency to High Frequency AC Power Frequency Converter without Electrolytic Capacitor Link for Consumer Induction Heating Appliances

  • Sugimura, H.;Eid, A.;Lee, H.W.;Kwon, S.K.;Suh, K.Y.;Nakaoka, M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1364-1367
    • /
    • 2005
  • In this paper, a novel prototype topology of soft switching PWM controlled high frequency AC power conversion circuit without DC voltage smoothing chemical capacitor filter link from the voltage grid of utility frequency AC power supply source with 60Hz-100V or 60Hz-200V is proposed and introduced for innovative consumer induction heating(IH) boiler applications as hot water producer, steamer and super heated vapor steamer.

  • PDF

802.11 practical improvements using low power technology

  • Bhargava, Vishal;Raghava, N.S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1735-1754
    • /
    • 2022
  • The reliability and performance of WiFi need optimization because of the rising number of WiFi users day by day. A highlighted point is saving power while transmitting and receiving packets using WiFi devices. Wake-on-Wlan (WoW) is also implemented to improve energy consumption, but it also needs betterment. This paper will introduce universal ideas to transmit and receive packets using low-power technology like Bluetooth or BLE (Bluetooth low energy). While looking for power-saving ways in this research, WiFi connection and maintenance also take care using lesser power-consuming technology. Identifying different use-cases where low power technology can help save energy and maintain 802.11 connection is part of the research. In addition, the proposed method discuss energy saving with unicast and broadcast/multicast data. Calculation of power-saving and comparison with standalone WiFi usage clearly shows the effectiveness of the proposed method.

Dynamic ATIM Power Saving Mechanism(DAPSM) in 802.11 Ad-Hoc Networks (802.11 Ad-Hoc 네트웍에서 Power Save Mechanism을 개선한 DAPSM 알고리즘)

  • Park, Jae-Hyun;Lee, Jang-Su;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.475-480
    • /
    • 2007
  • Recently, wireless networking devices that depend on the limited Battery and power-saving of wireless hosts became important issue. Batteries can provide a finite amount of energy, therefore, to increase battery lifetime, it is important to design techniques to reduce energy consumption by wireless hosts. This paper improved power saying mechanism in Distributed Coordination Function(DCF) of IEEE 802.11. In the IEEE 802.11 power saving mechanism specified for DCF, time is divided into so-called beacon intervals. At the start of each beacon interval, each node in the power saving mode periodically wakes up during duration called the ATIM Window. The nodes are required to be synchronized to ensure that all nodes wake up at the same time. During the ATIM window, the nodes exchange control packets to determine whether they need to stay awake for the rest of the beacon interval. The size of the ATIM window has considerably affected power-saving. This paper can provide more power-saving than IEEE 802.11 power saving mode because ATIM window size is efficiently increased or decreased.

Analysis of Power-Saving Protocols for Multi-hop Ad Hoc Networks (다중 홉 Ad Hoc 망에서 Power-Saving 프로토콜의 성능분석)

  • 김동현;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.203-207
    • /
    • 2003
  • Mobile Ad Hoc Network is a kind of network technology, that mobile hosts can compose networks freely and temporarily where the base networks don't exist and where its establishment is difficult or as occasion demands. Ubiquitous computer network is prograssing in the forms of miniaturization, lightweight or portability. So far, MANET was studied in the point how to route it efficiently, but its power saving problems are been issuing nowadays. We try to not only compare and analyze power saving protocols in multi-hop Ad Hoc network but also present their efficiencies in this thesis.

  • PDF

An Adaptive Power Saving Mechanism in IEEE 802.11 Wireless IP Networks

  • Pack Sangheon;Choi Yanghee
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.126-134
    • /
    • 2005
  • Reducing energy consumption in mobile hosts (MHs) is one of the most critical issues in wireles/mobile networks. IP paging protocol at network layer and power saving mechanism (PSM) at link layer are two core technologies to reduce the energy consumption of MHs. First, we investigate the energy efficiency of the current IEEE 802.11 power saving mechanism (PSM) when IP paging protocol is deployed over IEEE 802.11 networks. The result reveal that the current IEEE 802.11 PSM with a fixed wakeup interval (i.e., the static PSM) exhibits a degraded performance when it is integrated with IP paging protocol. Therefore, we propose an adaptive power saving mechanism in IEEE 802.11-based wireless IP networks. Unlike the static PSM, the adaptive PSM adjusts the wake-up interval adaptively depending on the session activity at IP layer. Specifically, the MH estimates the idle periods for incoming sessions based on the exponentially weighted moving average (EWMA) scheme and sets its wake-up interval dynamically by considering the estimated idle period and paging delay bound. For performance evaluation, we have conducted comprehensive simulations and compared the total cost and energy consumption, which are incurred in IP paging protocol in conjunction with various power saving mechanisms: The static PSM, the adaptive PSM, and the optimum PSM. Simulation results show that the adaptive PSM provides a closer performance to the optimum PSM than the static PSM.