• 제목/요약/키워드: Power window motor shaft

검색결과 4건 처리시간 0.018초

차량용 윈도우 모터를 적용한 감속기 일체형 구동부 개발 (Development of Speed Reducer Integrated Driving system Apply to Vehicle Window Motor)

  • 염광욱;함성훈
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.57-62
    • /
    • 2016
  • In this study, design the core part of the driving of the robot. The power of the driving is window motor for automobiles obtained by using a method of directly to the motor shaft of the worm gear type. The decelerator consists of a worm gear to receive power from the motor shaft, Helical gear contact to worm gear, a pinion gear to be connected in line with the helical gear, and an output shaft to be engaged to the pinion gear. Drive system by using the power from the motor shaft based on the deceleration gear designed by the gear ratio set by the gear teeth increases the torque.

자동차용 윈도우 모터를 이용한 보행로봇 구동부 설계 (The driving system design of walking robot which uses the automotive window motor)

  • 염광욱;함성훈;오세훈
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.137-141
    • /
    • 2011
  • Driving mechanism, the central part of a robot, was designed in this study. Power for the motive drive was acquired by directly connecting the motor shaft in worm shape of the low-end DC motor, car window motor, to a decelerator. The decelerator consists of a worm gear to receive power from the motor shaft, a pinion gear to be connected in line with the worm gear, and an output shaft to be engaged to the pinion gear. Motion driving is achieved by the power from the motor shaft with the designed gears, transferred to the deceleration mechanism and to the output gear.

머신비전을 이용한 PWM Shaft의 자동검사 시스템 개발 (Development of an Automatic Inspection System for PWM Shaft Using Machine Vision)

  • 배진호;김성관
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.125-130
    • /
    • 2013
  • In this paper, in order to overcome shortcomings of manual inspection for the automotive PWM Shaft, we developed an automated inline inspection system. The automated inline inspection system consists of the work feeder unit, conveying unit, outer diameter check unit, run-out and roundness check unit, machine vision, defective separation unit and status alarm unit. We used the machine vision system for automatic inspection process and designed the inline systems for automatic feeding and selecting process. Also the repeated operation test was performed in order to verify the precision and reliability of the proposed automated inline inspection system.