• Title/Summary/Keyword: Power tracking

Search Result 1,433, Processing Time 0.022 seconds

Analog Control Algorithm for Maximum Power Trackers Employed in Photovoltaic Applications

  • Ji, Sang-Keun;Jang, Du-Hee;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.503-508
    • /
    • 2012
  • Tracking the Maximum Power Point (MPP) of a photovoltaic (PV) array is usually an essential part of a PV system. The problem addressed by Maximum Power Point Tracking (MPPT) techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output $P_{MPP}$ under a given temperature and irradiance. MPPT control methods such as the perturb and observe method and the incremental conductance method require a microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme tracks the MPP very quickly and its hardware implementation is simple when compared with the conventional techniques. The new algorithm can successfully track the MPP even in the case of rapidly changing atmospheric conditions. In addition, it has higher efficiency than ordinary algorithms.

Maximum power point tracking method for building integrated PV system (건물용 태양광 컨버터의 최대전력 추종 기법 개발)

  • Yu, Byung-Gyu;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

A Design Study of Signal Processor for Small Tracking Radar (소형 추적 레이더를 위한 신호처리기 설계 기술 연구)

  • Choi, Jinkyu;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Kwon, Junbeom;Kim, Gwang-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.71-77
    • /
    • 2020
  • Recently, the tracking radar has confirmed the necessity of developing a small tracking radar that can be operated without various restrictions in various environments. In addition, the performance of a small tracking radar requires equal to or higher than the existing tracking radar. Such a small tracking radar can be implemented through miniaturization and low power of existing tracking radar. In this paper, the role and function of a signal processor for a small tracking radar are defined and we proposed a method to increase the efficiency of power consumption and miniaturization by minimizing the use of devices required to implement a signal processor for a small tracking radar. Used as a method for miniaturization, a device processor such as DDC and communication controller was implemented in an FPGA to design a signal processor for a small tracking radar. In addition, a low-power signal processor was designed by a power supply using a highly efficient switching regulator. Finally, the signal processor was verified by the performance test of the signal processor for the small tracking radar implemented, the Doppler tracking test using the signal processor on the small tracking radar, and the distance tracking test.

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

Adaptive Sliding Mode Control with Enhanced Optimal Reaching Law for Boost Converter Based Hybrid Power Sources in Electric Vehicles

  • Wang, Bin;Wang, Chaohui;Hu, Qiao;Ma, Guangliang;Zhou, Jiahui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.549-559
    • /
    • 2019
  • This paper proposes an adaptive sliding mode control (ASMC) strategy with an enhanced optimal reaching law (EORL) for the robust current tracking control of the boost converter based hybrid power source (HPS) in an electric vehicle (EV). A conventional ASMC strategy based on state observers and the hysteresis control method is used to realize the current tracking control for the boost converter based HPS. Then a novel enhanced exponential reaching law is proposed to improve the ASMC. Moreover, an enhanced exponential reaching law is optimized by particle swarm optimization. Finally, the adaptive control factor is redesigned based on the EORL. Simulations and experiments are established to validate the ASMC strategy with the EORL. Results show that the ASMC strategy with the EORL has an excellent current tracking control effect for the boost converter based HPS. When compared with the conventional ASMC strategy, the convergence time of the ASMC strategy with the EORL can be effectively improved. In EV applications, the ASMC strategy with the EORL can achieve robust current tracking control of the boost converter based HPS. It can guarantee the active and stable power distribution for boost converter based HPS.

MPPT Control of Photovoltaic System using HBPI Controller (HBPI 제어기를 이용한 태양광발전 시스템의 MPPT 제어)

  • Ko, Jae Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1864-1871
    • /
    • 2012
  • This paper proposes the hybrid proportional integral(HBPI) controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, in order to solve these problems, this paper proposes HBPI controller that is adjusted gain of conventional PI control using fuzzy control, and the maximum power point tracks using this controller. The validity of the controller proposed in this paper proves through the results of the comparisons.

A Study on the Manufacture of Single Axis Tracking Solar Power Generation System for BIPV (BIPV를 위한 단축 구동 태양광 전력 발생장치 제작에 관한 연구)

  • Cho, Jae-Cheol;Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.335-338
    • /
    • 2012
  • Recently, the energy has been used much more than ever, but there has been many problems including atmospheric pollution. So we need alternative energy resources, which are solar heat, solar light, wind power, small water power, etc. The field, which is most popular these days, is the energy source by solar light which transform electric energy using the solar cell and it is available with many researches. In this paper, we manufactured the solar power generation system over 90W using solar module which was 9.90V for Voc, 0.93 A for Isc, 8.64 V for Vmp, 0.75 A for Imp, 6.5 W for power. System was controlled by step motor with worm gear to operate optimum condition between $0^{\circ}{\sim}70^{\circ}$ angle. This system was very effective in tracking space use because it need less space than general solar module.

Global Maximum Power Point Tracking Method of Photovoltaic Array using Boost Converter (부스트 컨버터를 이용한 태양전지 어레이 전역 최대전력 점 추종 방법)

  • Hwang, Dong-Hyeon;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.216-223
    • /
    • 2018
  • Since solar cells have non-linear voltage-current output characteristics, Photovoltaic systems require the Maximum Power Point Tracking(MPPT) function. For this reason, a large number of MPPT techniques have been studied. However, the conventional MPPT techniques may fail to track the maximum power point when partial shading occurs in the solar cell array due to its characteristics. Therefore, it is necessary to research the MPPT technique that can follow the maximum power point in the partial shadow condition. In this paper, the characteristics of solar cell arrays in partial shadowing are analyzed and the MPPT technique which can follow the maximum power point in partial shadow condition has been proposed. To validate the proposed MPPT method, simulation and experimentation results are provided.

A Simple Real-Time DMPPT Algorithm for PV Systems Operating under Mismatch Conditions

  • Aniruddha, Kamath M.;Jayanta, Biswas;Anjana, K.G.;Mukti, Barai
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.826-840
    • /
    • 2018
  • This paper presents a distributed maximum power point tracking (DMPPT) algorithm based on the reference voltage perturbation (RVP) method for the PV modules of a series PV string. The proposed RVP-DMPPT algorithm is developed to accurately track the maximum power point (MPP) for each PV module operating under all atmospheric conditions with a reduced hardware overhead. To study the influence of parameters such as the controller reference voltage ($V_{ref}$) and PV current ($I_{pv}$) on the PV string voltage, a small signal model of a unidirectional differential power processing (DPP) based PV-Bus architecture is developed. The steady state and dynamic performances of the proposed RVP DMPPT algorithm and small signal model of the unidirectional DPP based PV-Bus architecture are demonstrated with simulations and experimental results. The accuracy of the RVP DMPPT algorithm is demonstrated by obtaining a tracking efficiency of 99.4% from the experiment.

Development of Multi-flat Reflector Sun Tracking System for Sun Photocell Maximum Power Generation (태양전지 최대전력 발생을 위한 다 평면 반사경 태양추적시스템 개발)

  • Lee, Kang-Sin;Lee, Hyun-Seog;Yoo, Seok-Ju;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, for high efficiency of power generation per natural light unit area is needed to sun tracking system. And it is needed to condensed light generator for reducer of equipment expense. As method of solving this problem, this paper is developed multi-flat reflector sun tracking system for sun photocell maximum power generation. The system is consisted of multi-flat reflector and two axes machinery and sun location perceiver and AVR controller. GaAs 3J cell generated 6.75 times power more than silicon cell by times condensing light system. As a result, condensing light system of multi-flat reflector generated maximum power and showed reducing costs to photovoltaic generator.