• 제목/요약/키워드: Power tracking

검색결과 1,432건 처리시간 0.021초

Development of a Novel Tracking System for Photovoltaic Efficiency in Low Level Radiation

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.405-411
    • /
    • 2010
  • This paper proposes a novel tracking algorithm considering radiation to improve the power of a photovoltaic (PV) tracking system. The sensor method used in a conventional PV plant is unable to track the sun's exact position when the intensity of solar radiation is low. It also has the problem of malfunctions in the tracking system due to rapid changes in the climate. The program method generates power loss due to unnecessary operation of the tracking system because it is not adapted to various weather conditions. This tracking system does not increase the power above that of a power of tracking system fixed at a specific position due to these problems. To reduce the power loss, this paper proposes a novel control algorithm for a tracking system and proves the validity of the proposed control algorithm through a comparison with the conventional PV tracking method.

접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석 (Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant)

  • 서동혁;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

An Improved Global Maximum Power Point Tracking Scheme under Partial Shading Conditions

  • Kim, Rae-Young;Kim, Jun-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.65-68
    • /
    • 2013
  • A photovoltaic array exhibits several local and single global maximum power points under partial shading conditions. To track the global maximum power point precisely, a novel global maximum power point tracking scheme is proposed in this paper. In the proposed scheme, robustness of the tracking performance has been improved by enhancing searching profile. In addition, the paper addresses the tracking failure condition, and provides the experimental verification with several simulation and experimental results.

태양광 발전 시스템의 향상된 전역 최대 발전전력 추종 기법 (Enhanced Global Maximum Power Point Tracking Method for a Photovoltaic System)

  • 장요한;배성우;정승훈
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.200-205
    • /
    • 2022
  • This paper presents an improved maximum power point tracking method that can fast track the global maximum power point (GMPP) for a photovoltaic system under partial shading conditions. The proposed method combines the advantages of the maximum power trapezium (MPT) method and the search-skip-judge method to minimize the tracking voltage intervals. Thus, the proposed method can quickly track the GMPP by skipping unnecessary tracking voltage intervals. The superiority of the proposed method is verified through simulation results in the MATLAB/Simulink and experimental real-time operation results with the hardware-in-the-loop simulation. The simulation and experimental results demonstrated that the proposed method has a faster tracking time than the MPT method under various partial shading conditions.

PV 시스템의 효율 최적화를 위한 추적 시스템 개발 (Tracking System Development for Optimal Efficiency of PV System)

  • 최정식;고재섭;김도연;정병진;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.188-190
    • /
    • 2008
  • In this paper, it proposes a the high efficiency tracking system regarding power loss when operating a tracking system for environment variable such as a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

기후환경 변화에 대한 태양광 추적 시스템의 효율최적화 제어 (Efficiency optimization control of photovoltaic tracking system with climate and environment variation)

  • 최정식;고재섭;정철호;김도연;정병진;전영선;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.403-406
    • /
    • 2008
  • In this paper proposes a novel tracking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구 (A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems)

  • 양형규;방태호;배선호;박정욱
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발 (Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

Effect of Imperfect Power Control on Performance of a PN Code Tracking Loop for a DS/CDMA System

  • Kim, Jin-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(1)
    • /
    • pp.209-212
    • /
    • 2000
  • In this paper, effect of imperfect power control on performance of a pseudonoise (PN) code tracking loop is analyzed and simulated for a direct-sequence/code-division multiple access (DS/CDMA) system. The multipath fading channel is modeled as a two-ray Rayleigh fading model. Power control error is modeled as a log-normally distributed random variable. The tracking performance of DLL (delay-locked-loop) is evaluated in terms of tracking jitter and mean-time-to-lose-lock (MTLL). From the simulation results, it is shown that the PN tracking performance is very sensitive to the power control error.

  • PDF

일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어 (A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation)

  • 박기태;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제22권6호
    • /
    • pp.89-99
    • /
    • 2008
  • 본 논문은 태양광 발전 추적 시스템의 발전량을 증가시키기 위해 일사량 급변에 대한 추적 장치 기동 시 전력소모를 고려한 새로운 추적 알고리즘을 제시한다. 종래의 태양광 발전에 사용되는 센서방식의 추적시스템은 구름 및 안개 등 급변하는 기후환경에 의해 추적 장치의 오동작의 문제점으로 태양의 정확한 추적이 불가능하다. 또한 프로그램 방식의 경우에는 기후 환경의 외부 요인에 대응하지 못함으로서 추적 장치의 불필요한 동작으로 인한 에너지소비가 발생된다. 이러한 이유로 태양 추적 장치가 실시간으로 태양의 방위각 및 고도 각을 추정하는 경우에도 실제 태양광 발전량은 특정한 위치에 고정되어 있는 경우보다 발전량이 증가하지 못한다. 본 논문에서는 이러한 전력소모를 줄이기 위한 추적시스템의 새로운 제어 알고리즘을 제시한다. 또한 종래의 태양광 추적 방식과 제시한 방법의 효율을 분석하고, 실증연구를 통하여 제시한 알고리즘의 타당성을 입증한다.