• Title/Summary/Keyword: Power system dynamic performance

Search Result 792, Processing Time 0.026 seconds

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

Performance Comparison Analysis for Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator (컴퓨터시뮬레이션과 실용량 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 성능비교분석)

  • Yun, Dong-Jin;Oh, Seung-Jin;Han, Byung-Moon;Jeong, Byoung-Chang;Jung, Yong-Ho;Choy, Young-Do;Jeon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

Dynamic Performance Comparision of various Combination of reactive power compensators (조상설비 조합에 따른 정태적 특성 및 동태적 특성 비교)

  • Kang Sang Gyun;Jang Gil Soo;Lee Byong Jun;Kwon Sae Hyuk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.224-226
    • /
    • 2004
  • Flexible AC Transmission System (FACTS) can greatly reinforce power systems through improvement of power transmission capacity and utilization of equipment under the circumstance of continuous load growth and deregulation SVC and STATCOM are shunt FACT devices that have similar static characteristics with Mwhuical Swikhed Capacitor (MSC). The main issue of this paper is the analysis of different dynamic characteristics when STATCOM is solely adopted and when STATCOM is adopted with combination of other reactive power compensator such as SVC and M5C. Furthermore, better application of reactive power compensators can be clarified through analysis of dynamic characteristics of various combinations of reactive power compensators.

  • PDF

A Dynamic Work Manager for Heterogeneous Cluster Systems (DWM: 이기종 클러스터 시스템의 동적 자원 관리자)

  • Park, Jong-Hyun;Kim, Jun-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.56-62
    • /
    • 2009
  • Inexpensive high performance computer systems combined with high speed networks and machine independent communication libraries have made cluster computing a viable option for parallel applications. In a heterogeneous cluster environment, efficient resource management is critically important since the computing power of the individual computer system is a significant performance factor when executing applications in parallel. This paper presents a dynamic task manager, called DWM (dynamic work manager). It makes a heterogeneous cluster system fully utilize the different computing power of its individual computer system. We measure the performance of DWM in a heterogeneous cluster environment with several kernel-level benchmark programs and their programming complexity quantitatively. From the experiments, we found that DWM provides competitive performance with a notable reduction in programming effort.

A Study on the Analysis of Power System Stability using MGPSS (MGPSS를 이용한 전력계통안정도 해석)

  • Lee, Sang-Keun;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.165-167
    • /
    • 2007
  • This paper presents a analysis method for power system stability using a Modified Genetic-based Power System Stabilized(MGPSS). The proposed MGPSS parameters are optimized using Modified Genetic Algorithm(MGA) in order to maintain optimal operation of generator under the various operating conditions. To improve the convergence characteristics, real variable string is adopted. The results tested on a single machine infinite bus system verify that the proposed controller has better dynamic performance than conventional controller.

  • PDF

Design of QFT controller of superconductor flywheel energy storage system for load frequency control

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • In this paper, the Superconductor flywheel energy storage system (SFESS) was used for the load frequency control (LFC) of an interconnected 2 area power system. The robust SFESS controller using quantitative feedback theory (QFT) was designed to improve control performance in spite of parameter uncertainty and unexpected disturbances. An overlapping decomposition method was applied to simplify SFESS controller design for the interconnected 2 area power system. The model for simulation of the interconnected 2 area power system included the reheat steam turbine, governor, boiler dynamics and nonlinearity such as governor deadband and generation rate constraint (GRC). To verify robust performance of proposed SFESS controller, dynamic simulation was performed under various disturbances and parameters variation of power system. The results showed that the proposed SFESS controller was more robust than the conventional method.

Performance Improvement of a Grid-Connected Inverter System using a Sliding-Mode Based Direct Power Control with a Variable Gain (슬라이딩 모드 기반의 가변이득을 가지는 직접전력제어를 이용한 계통연계형 인버터의 성능개선)

  • Lee, Byoung-Seoup;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • This paper proposes a performance improvement of grid-connected inverter system using sliding-mode based direct power control with a variable gain. The proposed control method determine variable gain of PI controller by using modeling at direct power control (DPC) applied to space vector modulation method. Also, this method use sliding-mode control to maintain excellent dynamic response of character of direct power control (DPC). The validity of the proposed algorithm are verified by simulations and experiments.

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

Dynamic-state Model[1] Transmission Line Protective Relay Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 송전선로 보호 계전기의 동특성 모델[1])

  • Lee, H.H.;Kim, C.H.;Cho, K.B.;Chang, B.T.;Lee, J.W.;Ahn, S.P.;Lee, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.348-350
    • /
    • 2003
  • In recent years, with the continuous development of modem power system, the need for high performance protection to meet the customers' requests for more stable and reliable power supply has become increasingly emphasized. So, there is urgent need for a proper testing platform about not only existing digital protection relay but also new digital protection relay on the transmission line. It is also dynamic-state test which can test the performance of digital relay. This paper suggests basic system model for testing transmission line protection using PSCAD/EMTDC, and presents the process of the component modeling in the basic system.

  • PDF

A Modeling of Proportional Pressure Control Valve and its Control (비례전자 감압밸브의 모델링과 제어)

  • Yang, K.U.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF