• Title/Summary/Keyword: Power spectral density function

Search Result 132, Processing Time 0.022 seconds

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

A Study on the Stress Analysis of Launch Vehicle due to Acoustic Loads (음향 하중에 의한 발사체의 응력해석에 관한 연구)

  • Yeon,Jeong-Heum;Yun,Seong-Gi;Jang,Yeong-Sun;Lee,Yeong-Mu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.91-98
    • /
    • 2003
  • In the structural analysis of a launch vehicle, the construction of loading functions and the determination of responses to them are very important. Among many kinds of loads, acoustic load generated by exhaust is a random load that can be described in a statistical manner. In this study, loading functions corresponding to the acoustic loads are constructed and applied to the structural analysis of launch vehicle. Acoustic loading functions are constructed using source allocation method. Structural analyses are carried out by using finite element modelling and frequency response function of finite element model. The stresses resulting from acoustic loads and acceleration power spectral density functions at interfaces of each section are calculated. These analyses are essential for the development of environmental test specifications and associated dynamic design requirements which are necessary to ensure overall vehicle reliability.

Dynamic Response of Steel Plate Girder Bridges by the KL-510 Load (KL-510 하중에 의한 강판형교의 동적응답)

  • Chung, Tae-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.50-60
    • /
    • 2013
  • Dynamic response of steel plate girder bridges by KL-510 design truck in KHBDC considering the road surface roughness of bridges and bridge-vehicle interaction is investigated. Simply supported steel plate girder bridges with span length of 20m, 30m, and 40m from "Standard Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for a bridge model, and ten sets of the road surface roughness of bridge deck are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight, which is the same as that of KL-510 design truck, is used for dynamic analysis. For the finite element modeling of superstructure, beam element for the main girder, shell element for the concrete deck, and rigid link between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different span are calculated by the proposed numerical analysis model and compared with those specified by several bridge codes.

Neutron Noise Analysis for PWR Core Motion Monitoring (중성자 잡음해석에 의한 PWR 노심 운동상태 감시)

  • Yun, Won-Young;Koh, Byung-Jun;Park, In-Yong;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.253-264
    • /
    • 1988
  • Our experience of neutron noise analysis in French-type 900 MWe pressurized water reactor (PWR) is presented. Neutron noise analysis is based on the technique of interpreting the signal fluctuations of ex-core detectors caused by core reactivity changes and neutron attenuation due to lateral core motion. It also provides advantages over deterministic dynamic-testing techniques because existing plant instrumentation can be utilized and normal operation of the plant is not disturbed. The data of this paper were obtained in the ULJIN unit 1 reactor during the start-up test period and the statistical descriptors, useful for our purpose, are power spectral density (PSD), coherence function (CF), and phase difference between detectors. It is found that core support barrel (CSB) motions induced by coolant flow forces and pressure pulsations in a reactor vessel were indentified around 8 Hz of frequency.

  • PDF

A Combined Acoustic Feedback and Noise Cancellation Algorithm for Digital Hearing Aids (디지털 보청기를 위한 음향궤환 몇 잡음 제거 알고리즘)

  • Lee, Haeng-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.911-916
    • /
    • 2010
  • This paper proposes a new algorithm to cancel the acoustic feedback and noise signals in digital hearing aids. The proposed algorithm combines the feedback canceller to remove acoustic feedback signals and the noise canceller to reduce background noises. The feedback canceller is implemented by normal adaptive FIR filter, and the noise canceller is implemented by using the Wiener solution in frequency domain. This noise canceller has the transfer function presented by the power spectral density of signals. To verify the performances of the proposed algorithm, the simulations were carried out for the system. As the results of simulations, it was proved that we can advance 10.85dB output SNR on the average for the forward path gain of 0dB, and 11.04dB output SNR on the average for the forward path gain of 6dB, in the case of using the proposed algorithm.

Dynamic Response of Steel Plate Girder Bridges by Numerical Dynamic Analysis (동적해석에 의한 강판형교의 동적응답)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.39-49
    • /
    • 2008
  • Dynamic responses of steel plate girder bridges considering road surface roughness of bridge and bridge-vehicle interaction are investigated by numerical analysis. Simply supported steel plate girder bridges with span length of 20 m, 30 m, and 40 m from "The Standardized Design of Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for bridge model and the road surface roughness of bridge decks are generated from power spectral density(PSD) function for different road. Three different vehicles of 2- and 3-axle dump trucks, and 5-axle tractor-trailer(DB-24), are modeled three dimensionally. For the bridge superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different spans, type of vehicles and road surface roughnesses are calculated by the proposed numerical analysis model and compared with those specified by several bridge design codes.

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

A Study on the Dynamic Response of Steel Highway Bridges Using 3-D Vehicle Model (3차원(次元) 차량(車輛)모델을 사용(使用)한 강도로교(鋼道路橋)의 동적응답(動的應答) 관(關)한 연구(硏究))

  • Chung, Tae Ju;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1055-1067
    • /
    • 1994
  • This paper is presented to perform linear dynamic analysis of bridges due to vehicle moving on bridges. The road surface roughness and bridge/vehicle interaction are also considered. The bridge and vehicle are modeled as 3-D bridge and vehicle model, respectively. The road surface roughness of the roadway and bridge decks are generated from power spectral density(PSD) function for good road. The PSD function proposed by C.J. Dodds and J.D. Robson is used to describe the road surface roughness for good road condition. The vehicles are modeled as two nonlinear vehicle model with 7-D.O.F of truck and 12-D.O.F of tractor-trailer and the equations of motion of the vehicles are derived using Lagrange's equation. The main girder and concrete deck are modeled as beam and shell element, respectively and rigid link is used between main girder and concrete deck. The equations of motion of the vehicles are solved by Newmark ${\beta}$ method and the equations of the motion of the bridges are solved by mode-superposition procedures. The validity of the proposed procedure is demonstrated by comparing the results with the experimental data reported by the AASHO Road Test. The comparison shows that the agreement between experiment and theory is quite satisfactory.

  • PDF

Quantitative Electroencephalogram Markers for Predicting Cerebral Amyloid Pathology in Non-Demented Older Individuals With Depression: A Preliminary Study (비치매 노인 우울증 환자에서 대뇌 아밀로이드 병리 예측을 위한 정량화 뇌파 지표: 예비연구)

  • Park, Seon Young;Chae, Soohyun;Park, Jinsick;Lee, Dong Young;Park, Jee Eun
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Objectives: When elderly patients show depressive symptoms, discrimination between depressive disorder and prodromal phase of Alzheimer's disease is important. We tested whether a quantitative electroencephalogram (qEEG) marker was associated with cerebral amyloid-β (Aβ) deposition in older adults with depression. Methods: Non-demented older individuals (≥ 55years) diagnosed with depression were included in the analyses (n = 63; 76.2% female; mean age ± standard deviation 73.7 ± 6.87 years). The participants were divided into Aβ+ (n = 32) and Aβ- (n = 31) groups based on amyloid PET assessment. EEG was recorded during the 7min eye-closed (EC) phase and 3min eye-open (EO) phase, and all EEG data were analyzed using Fourier transform spectral analysis. We tested interaction effects among Aβ positivity, condition (EC vs. EO), laterality (left, midline, or right), and polarity (frontal, central, or posterior) for EEG alpha band power. Then, the EC-to-EO alpha reactivity index (ARI) was examined as a neurophysiological marker for predicting Aβ+ in depressed older adults. Results: The mean power spectral density of the alpha band in EO phase showed a significant difference between the Aβ+ and Aβ- groups (F = 6.258, p = 0.015). A significant 3-way interaction was observed among Aβ positivity, condition, and laterality on alpha-band power after adjusting for age, sex, educational years, global cognitive function, medication use, and white matter hyperintensities on MRI (F = 3.720, p = 0.030). However, post-hoc analyses showed no significant difference in ARI according to Aβ status in any regions of interest. Conclusion: Among older adults with depression, increased power in EO phase alpha band was associated with Aβ positivity. However, EC-to-EO ARI was not confirmed as a predictor for Aβ+ in depressed older individuals. Future studies with larger samples are needed to confirm our results.

A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN (무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석)

  • Lee, Yong-Sik;Lee, Ha-Cheol;Lee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.741-753
    • /
    • 2008
  • This paper explores the throughput performance of CSMA/CA-based DCF protocol over both ideal channels and fading channels with payload size at the MAC layer in the 802.11a wireless LAN. In the ideal channel, there are no errors and at the transmission cycle there is one and only one active station which always has a packet to send and other stations can only accept packets and provide acknowledgements. In the fading channel, bit errors appear in the channel randomly and the number of stations is assumed to be fixed. And each station always has packets for transmission. In other words, we operate in saturation conditions. Up to now conventional research work about DCF throughput analysis of IEEE 802.11 a wireless LAN has been done over the ideal channel, but this paper is done over the Rayleigh/Ricean fading channel. So, the ratio of received average energy per bit-to-noise power spectral density $E_b/N_o$ is set to 25 dB and the ratio of direct-to-diffuse signal power in each sub-channel $\xi$ is set to 6 for combined Rayleigh/Ricean fading channel. In conclusion, it is shown that the saturation throughput is always less than the maximum throughput at all the payload size and the higher the transmission rate be, the higher the decreasing rate of saturation throughput compared to the maximum throughput be.