• Title/Summary/Keyword: Power save

Search Result 516, Processing Time 0.023 seconds

Optimal Operation by integrating Sihwa Power into NamSihwa Systems (시화조력발전 연계에 의한 남시화 계통의 최적 운영 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.120-126
    • /
    • 2009
  • This paper presents an optimal operating scheme by integrating Sihwa tidal power into NamSihwa systems. For optimal operation of NamSihwa systems, the sea levels of 1 minute interval using cubic interpolation based on the forecasted levels of high and low water are calculated. Especially, it is compared by three schemes to purchase total power from transmission system to purchase total power from tidal power system in time period that can generate tidal power and to purchase total power by comparing purchase costs from transmission system and tidal power system. The scheme may contribute to energy save in Korea that natural resources are lacking.

Design and Implementation of a Low Power Chip with Robust Physical Unclonable Functions on Sensor Systems (센서 시스템에서의 고신뢰 물리적 복제방지 기능의 저전력 칩 설계 및 구현)

  • Choi, Jae-min;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-63
    • /
    • 2018
  • Among Internet of things (IoT) applications, the most demanding requirements for the widespread realization of many IoT visions are security and low power. In terms of security, IoT applications include tasks that are rarely addressed before such as secure computation, trusted sensing, and communication, privacy, and so on. These tasks ask for new and better techniques for the protection of data, software, and hardware. An integral part of hardware cryptographic primitives are secret keys and unique IDs. Physical Unclonable Functions(PUF) are a unique class of circuits that leverage the inherent variations in manufacturing process to create unique, unclonable IDs and secret keys. In this paper, we propose a low power Arbiter PUF circuit with low error rate and high reliability compared with conventional arbiter PUFs. The proposed PUF utilizes a power gating structure to save the power consumption in sleep mode, and uses a razor flip-flop to increase reliability. PUF has been designed and implemented using a FPGA and a ASIC chip (a 0.35 um technology). Experimental results show that our proposed PUF solves the metastability problem and reduce the power consumption of PUF compared to the conventional Arbiter PUF. It is expected that the proposed PUF can be used in systems required low power consumption and high reliability such as low power encryption processors and low power biomedical systems.

Power Quality of Wind/Diesel Hybrid Operation at an Micro Grid (마이크로 그리드에서의 풍력/디젤 복합발전 전력품질)

  • Kim, Seok-Woo;Ko, Seok-Whan;Jand, Moon-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.41-47
    • /
    • 2009
  • Wind/diesel hybrid operation can be one of the most effective option for electrical power production at a remote area such as Antarctica. The king Sejong station at Antarctica relies its power production on diesel engines and diesel oil is supplied every other year by ships. However, the oil transportation processes are liable to potential oil spillage caused by the floating ice around the King George island. The long-term storage of the oil at the station can also contaminate the surrounding soils. A l0kW wind turbine has been installed to save oil consumption and operated in connection with the diesel generators since 2006. The diesel engine that operated poorly during the first year of installation was replaced in 2008 to enhance power production an recent measurements indicate that both diesel power quality and the wind turbine availability have been dramatically improved by the replacement. This report discusses electrical power qualities of wind/diesel hybrid system operating at an isolated micro gird located in the king Sejong station. Our experience reveals that the similar technologies can be applied to domestic islands, for example, in the south sea.

IoT based Mobile Smart Monitoring System for Solar Power Generation (IoT 기반 모바일 스마트 태양광 발전 모니터링 시스템)

  • Lee, Jaejin;Kim, Kihun;Park, Soovin;Byun, Hyoungjune;Shim, Kyusung;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.55-64
    • /
    • 2017
  • In this paper, we propose and implement an IoT based mobile smart monitoring system in the view point of safety inspection for solar power generation. The main features and contributions of proposed system are as follows. First, the proposed system model can evaluate periodically in the view point of safety inspection the conditions of the system and structure of solar power generation. Second, the proposed system automatically re-processes the measurement data of the system and structure for solar power generation and save it into database. Third, using the re-processed and saved information, the proposed system can provide the monitoring information with webpage form to both administrator and owner of solar power generation system, thus they can measure and confirm directly in the view point of safety inspection the conditions of the solar generation structure without visiting those places. Fourth, the provided web pages for the monitoring of solar power generation can be accessed regardless of the system structures. The performance evaluations of the proposed system show that the proposed monitoring system can save efficiently the data received from the sensors installed in the structure of solar power generation into the data base in the collecting server. And the proposed system can support that both administrator and user of solar power generation system access webpage in real time without considering places by using mobile phone and desktop computer and obtain the information for the conditions of the system and structure of solar power generation with graph forms.

Influence of Flowing Velocity and Length of Delivery Hoses on Power Requirement of Agricultural pump. (각종 송출 호오스의 구경 및 길이가 농용양수로의 소요동력에 미치는 영향)

  • 김기대;김성래;이한만
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.46-52
    • /
    • 1979
  • The water delivery hose for agricultural pump is getting popular in rural areas in korea. Friction head loss, discharge, and power requirements were measured in various discharge for different material and diameter of hose to get basic data for economical use in agricultural pump. The results attained in this study were as follows ; 1. Friction head loss increased significantly as the velocity increased, and the difference of velocity between the different diameter of hose was bigger than that between materials, which was resulted in the increase of the friction head loss. 2. Friction head loss in the case of that the velocity with 2m/sec was constant was about 3.53 to 4.01 m/100m in the diameter 3" and about 2.30 to 3.10 m/100m in the diameter 4". Material A of diameter 3" showed the maximum value 8.4m/100m in Reynolds number $2.0\times10^5$, 4" got the minimum value 2.24m/100m, the difference between these values was bigger than 6m per 100 meters in the friction head loss. 3. Darcy-Weisbach formular with friction coefficient [f] calculated by Nikurades formular in the smooth pipe or with friction coefficient [f] calculated on the base of C value 125 in Hazen-Williams formular was available in friction head loss of the water discharger hose in rural areas. 4. Total head increased as friction head loss increased , meanwhile total discharge decreased, and 20 percents of energy was more saved in Material C 4″pipe than Material A 3″pipe in the view point from the discharge per unit power requirement, this phenomenon suggested that long distance pipe would be advantage in larger diameter pipe for save of energy. for save of energy.

  • PDF

A Design of Power-saving PC System Using the IP Address Restriction (IP 주소 제한을 이용한 PC 절전 시스템의 설계)

  • Kim, Hong Yoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 2013
  • The green IT technology is being introduced in diverse sectors, especially in the data center and green computer sectors. Rack-type PCs, which have been developed by improving the computer hardware, are effective for data centers and large businesses, but they are not usually introduced in small organizations such as small and medium businesses and schools because they require high initial costs. Power-saving PC software enables the inexpensive power control, but the installation of the power-saving software in all computers in the organization is not an easy task. Computer users in the organization are usually not cooperative as they do not think the power-saving cost is directly related to themselves. In this paper, a technique wherein the server has a restriction in providing the IP address to the computers that has no power-saving software is proposed, so that users will cooperate in the PC power-saving system to avoid inconvenience. In order to provide restricted IP address periodically, the server makes a request of power-saving software installation check for user's PC. Proposed technique is more effective ways to save computer energy, because it does not depend on specific systems or organizations.

A Transmit Power Control Method for Low-Power Communication in 802.11b Infrastructure Networks (IEEE 802.11b Infrastructure 환경에서 저전력 통신을 위한 전송 전력 제어 기법)

  • Kwon Do Han;Jung Hee Lock;Park Chang Yun;Jung Chung ll
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.180-189
    • /
    • 2005
  • This paper describes a transmission power control method for power saving in 802.11b wireless LANs. We have first explored how much effects reducing transmission power has on communication performance. Then we propose a power control algorithm, whose approach is similar to that of TCP congestion control, determining an appropriate transmission power level by monitoring the retransmission rate. We have implemented an utility software on a Linux-based system and made several experiments to validate the proposed method. The results show that it is possible to save energy consumption by controlling transmission power without sacrificing communication performance.

A Study on the Low Power LDO Having the Characteristics of Superior IR Drop (우수한 IR Drop 특성을 갖는 저전력 LDO에 관한 연구)

  • Lee, Kook-Pyo;Pyo, Chang-Soo;Koh, Si-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1835-1839
    • /
    • 2008
  • Power management is a very important issue in portable electronic applications. Portable electronic devices require very efficient power management like LDO to increase the battery life. As the voltage variation of battery power is large in the application of cell phone, camera, laptop, automotive, industry application and so on, battery power is not directly used and LDO is used to supply the power of internal circuit. Besides, LDO can supply DC voltage that is lower than bauer voltage and constant DC voltage that is not related to largely fluctuated battery power. In the study, the power-save mode current and IR-drop characteristics are analyzed from a LDO with on-chip fabricated in 0.18-um CMOS technology.

Dynamic Power Management Framework for Mobile Multi-core System (모바일 멀티코어 시스템을 위한 동적 전력관리 프레임워크)

  • Ahn, Young-Ho;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.52-60
    • /
    • 2010
  • In this paper, we propose a dynamic power management framework for multi-core systems. We reduced the power consumption of multi-core processors such as Intel Centrino Duo and ARM11 MPCore, which have been used at the consumer electronics and personal computer market. Each processor uses a different technique to save its power usage, but there is no embedded multi-core processor which has a precise power control mechanism such as dynamic voltage scaling technique. The proposed dynamic power management framework is suitable for smart phones which have an operating system to provide multi-processing capability. Basically, our framework follows an intuitive idea that reducing the power consumption of idle cores is the most effective way to save the overall power consumption of a multi-core processor. We could minimize the energy consumption used by idle cores with application-targeted policies that reflect the characteristics of active workloads. We defined some properties of an application to analyze the performance requirement in real time and automated the management process to verify the result quickly. We tested the proposed framework with popular processors such as Intel Centrino Duo and ARM11 MPCore, and were able to find that our framework dynamically reduced the power consumption of multi-core processors and satisfied the performance requirement of each program.

A Dynamic Frequency Controlling Technique for Power Management in Existing Commercial Microcontrollers

  • Lueangvilai, Attakorn;Robertson, Christina;Martinez, Christopher J.
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • Power continues to be a driving force in central processing units (CPU) design. Most of the advanced breakthroughs in power have been in a realm that is applicable to workstation CPUs. Advanced power management systems will manage temperature, dynamic voltage scaling and dynamic frequency scaling in a CPU. The use of power management systems for microcontrollers and embedded CPUs has been modest, and mostly focuses on very large scale integration (VLSI) level optimizations compared to system level optimizations. In this paper, a dynamic frequency controlling (DFC) technique is introduced, to lay the foundation of a system level power management system for commercial microcontrollers. The DFC technique allows a commercial microcontroller to have minor modifications on both the hardware and software side, to allow the clock frequency to change to save power; results in this study show a 10% savings. By adding an additional layer of software abstraction at the interrupt level, the microcontroller can operate without having knowledge of the current clock frequency, and this can be accomplished without having to use an embedded operating system.