• Title/Summary/Keyword: Power plant identification

Search Result 128, Processing Time 0.029 seconds

Development of Inter-Turn Short Circuits Sensor for Rotor Winding of Synchronous Generator (발전기 회전자의 층간단락 감지기 개발)

  • Nam, Jong-Ha;Lee, Seung-Hak;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.307-312
    • /
    • 2002
  • Inter-turn short circuits can have significant effects on a generator and its performance. The Inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a shorted- turn test was performed at the Seoinchon combined cycle power plant on gas turbine generator and stim turbine generator. This sensor will be used as a detecting of Inter-turn short circuits for synchronous generator's field winding.

Modeling and Parameter Identification of Pulverizer Mass Flow (미분기 질량흐름에 대한 모델링 및 파라미터 식별)

  • Li, Xinlan;Shin, Yong-Hwan;Jang, Eun-Seong;Lee, Soon-Young;Shin, Hwi-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1694_1695
    • /
    • 2009
  • In this paper, the coal mass flow of the pulverizer used in the coal-fired power plants is modeled in view of the controller design rather than the educational simulator. The coal mass flow is modeled by reinvestigating the mass balance models physically. To identify the model parameters, the Matlab Simulation Tool is used with the data gained from a plant database. It can be seen that the simulated model outputs are well matched with the measured ones.

  • PDF

Model Updating of an Electric Cabinet using Shaking Table Test

  • Cui, Jintao;Cho, Sung-Gook;Kim, Doo-Kie;Koo, Ki-Young;Cho, Yang-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.59-62
    • /
    • 2008
  • This paper presents the procedure and the results of modal identification testing of a seismic monitoring system central processing unit cabinet for a nuclear power plant. This paper also provides a model updating for making effective analytical modeling of cabinet-type electrical equipment by comparing the test results with the analysis results. From the test results and their interpretation, modal properties (modal frequency, mode shape, and modal damping) of the specimen were satisfactorily identified. However, the analysis results may need to study further to find the effective and presentative model for the cabinet-type electrical equipment. This paper just presents the first stage of the research project "Development of dynamic behavior analysis technique of dynamic structure system" which is trying to build the lumped mass beam stick model even their results do not agree well with the test results.

  • PDF

Identification of Guided-wave Modes for on-line monitering in the pipe weldment (배관 용접부의 상시감시를 위한 유도초음파 모드 규명)

  • Park Ik-Geun;Kim Tae-Hyeong;Lee Cheol-Gu;Kim Yong-Gwon;Park Tae-Seong;Lee Jin-Hyeok
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.307-309
    • /
    • 2006
  • For efficient NDE of pipes, essential components of power plant facilities, ultrasonic guided waves were generated and received applying an air-coupled transducer and comb one as non-contact technology, Mode generation and selection were predicted based on theoretical dispersive curve and the element spaceof a comb transducer. In addition, a receiving angle of the air-coupled transducer was determined to acquire the predicted modes by theoretical phase velocity of each mode. Theoretical dispersive curve was compared with the results of the time-frequency spectroscopes based on the wavelet transform and 2D-FFT to identify the characteristics of the received mode. The received modes show a good agreement with the predicted ones.

  • PDF

$H_2$ sensor for detecting hydrogen in DI water using Pd membrane (발전기 스테이터의 냉각코일에 pinhole 발생을 검지 할 수 있는 수소센서 개발)

  • Choi, Sie-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.442-445
    • /
    • 1999
  • In this work, to detect of hydrogen in DI water in the generator area of nuclear power plants was fabricated Pd/Pt gate MISFET sensor using Pd membrane. $H_2$ permeation through Pd accounts for external mass transfer, surface adsorption and desorption, transitions to and from the bulk metal, and diffusion within the metal. The identification of pinholes in the generator area of plant is an important safety consideration, as hydrogen build-up gives rise to explosion. For this type of application the sensor needs to be isolated in DI water, accordingly, a Pd membrane was used to separate the DI water. The hydrogen in the DI water was then absorbed on the Pd thin film and diffused into the oil through the thin film. The Pd/Pt gate MISFET sensor, encapsulated by oil, will thereby detect permeated hydrogen.

  • PDF

POTENTIAL APPLICATIONS FOR NUCLEAR ENERGY BESIDES ELECTRICITY GENERATION: A GLOBAL PERSPECTIVE

  • Gauthier, Jean-Claude;Ballot, Bernard;Lebrun, Jean-Philippe;Lecomte, Michel;Hittner, Dominique;Carre, Frank
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source tree of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80% of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: ${\bullet}$ Timely adapted licensing process and regulations, codes and standards for such application and design ${\bullet}$ An industry oriented R&D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector ${\bullet}$ Identification of an end user(or a consortium of) willing to fund a FOAK

Development of Inter-Turn Short Circuits Sensor for Field Winding of Synchronous Generator

  • Nam J-H;Jeon Y-S;Choe G-H;Lee S-H;Jeong S-Y;Yoo B-Y;Ju Y-H;Lee Y-J;Shin W-S
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.56-59
    • /
    • 2001
  • An effective method of detecting inter-turn short circuits on round rotor windings is described. Shorted-turns can have significant effects on a generator and its performance. A method of detecting inter-turn short circuits on rotor windings is described. The approach used is to measure the rate of change of the air-gap flux density wave when the rotor is at operating speed and excitation is applied to the field winding. The inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a inter-turn short circuits test was performed at the West-Inchon combined cycle power plant on gas turbine generator and steam turbine generator. This sensor will be used as a detecting of shorted-turn for field winding of synchronous generator. The purpose of this paper is to describe the design and operation of a sensitive inter-turn short circuits detector. In this paper, development of inter-turn short circuits sensor for field winding of synchronous generator and application in a field.

  • PDF

Identification on Fatigue Failure of Impeller at Single Stage Feedwater Pumps During Commissioning Operation (단단 주 급수 펌프 임펠러에서 시운전 중 발생한 피로 절손에 관한 규명 연구)

  • Kim, Yeon-Whan;Kim, Kye-Yean;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.937-942
    • /
    • 2008
  • This paper presents a case history on failures of impeller and shaft due to pressure pulsation at single stage feed water pumps in 700 MW nuclear power plant during commissioning operation. The pumps had been service and had run for approximately $40{\sim}50$ hours. For the most part, the failures of impeller occurred with the presence of a number of fatigue cracks. All cracks were associated with the deleterious surface layer of impeller by visual and metallurgical examination. On-site testing and analytical approach was performed on the systems to diagnose the problem and develop a solution to reduce the effect of exciting sources. A major concern at high-energy centrifugal pump is the pressure pulsation created from trailing edge of the Impeller blade, flow separation and recirculation at centrifugal pumps of partial load. Pressure pulsation due to the interaction generating between impeller and casing coincided with natural frequencies of the impeller and shaft system during 1ow load operation. It was identified that dynamic stress exceeding the fatigue strength of the material at the thin shroud section due to the hydraulic instability at running condition below BEP.

Qualitative Analysis of the Component Materials of Nuclear Power Plant Using Time-Resolved Laser Induced Breakdown Spectroscopy (시간분해 레이저 유도 파열 분광분석에 의한 원자력발전소 계통재질의 성분 정성분석)

  • Chung, Kun-Ho;Cho, Yeong-Hyun;Lee, Wanno;Choi, Geun-Sik;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.416-422
    • /
    • 2004
  • Time-resolved laser induced breakdown spectroscopy (TRELIBS) has been developed and applied to the qualitative analysis of the component materials of nuclear power plant. The alloy samples used in this work were carbon steels (A106 Gr. B; A336 P11; A335 P22), stainless steels (type 304; type 316) and inconel alloys (Inconel 600; Inconel 690; Inconel 800). Carbon steels can be individually distinguished by the intensity ratio of chromium to iron and molybdenum to iron emission lines observed at the wavelength raging from 485 to 575 nm. Type 316 stainless steel can be easily differentiated from type 304 by identification of the molybdenum emission lines at an emission wavelength ranging from 485 to 575 nm: type 304 does not give any molybdenum emission lines, but type 316 does. The inconel alloys can be individually distinguished by the intensity ratio of Cr/Fe and Ni/Fe emission lines at the wavelength raging from 420 to 510 nm. TRELIBS has been proved to be a powerful analytical technique for direct analysis of alloys due to its non-destructivity and simplicity.

Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

  • Jung, Min;Shin, Sun-Hee;Park, Jeong-Mi;Lee, Sung-Nam;Lee, Mi-Yeon;Ryu, Ki-Hyun;Paek, Kee-Yoeup;Harn, Chee-Hark
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacteriummediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of $T_0$, $T_1$ and $T_2$ peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant.