• 제목/요약/키워드: Power output control

검색결과 2,771건 처리시간 0.028초

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구 (A study on the Power Characteristics of Hybrid Power System by Active Power Management)

  • 이보화;박부민
    • 한국항공우주학회지
    • /
    • 제44권9호
    • /
    • pp.833-841
    • /
    • 2016
  • 본 연구에서 대상으로 삼은 순항 200 W급 전기동력무인기는 태양전지, 연료전지, 배터리를 동시에 주 전력원으로 사용한다. 각 전력원별 출력은 능동전력제어 방식에 의해 연료전지의 최대 출력을 제한한 상태에서 배터리의 적정용량을 유지하도록 각 전력원별 전력제어를 수행하게 된다. 능동전력제어 방식에 의한 각 전력원별 출력변동은 지상통합시험을 통해 확인하였다. 또한 연료전지의 최대출력제한이 전체 시스템의 출력변동에 미치는 영향을 실험적으로 확인하였으며, 연료전지의 최대출력값은 연료전지 시스템용 6직렬 소형 배터리의 과방전을 방지하기 위해서는 150W가 적절함을 확인하였다.

Single Phase PWM Converters with Active Filter Functions Both on AC-Input and DC-Output Sides

  • MATSUI, Mikihiko;KITANO, Tatsuya
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.258-263
    • /
    • 1998
  • A comparative study of single-phase PWM converters having active filtering functions both on ac-input and dc-output sides have been carried out. Based on the function of the dc-output side active filter, two types of configurations, the RPM (ripple power managing) type and the APM (average power managing) type are compared to show their contrastive characteristics. The prototype system using DSP based control algorithms, i.e. deadbeet current control and voltage sensor-less technique using full-order observer, show the availability of the proposed system.

  • PDF

Unified MPPT Control Strategy for Z-Source Inverter Based Photovoltaic Power Conversion Systems

  • Thangaprakash, Sengodan
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.172-180
    • /
    • 2012
  • Z-source inverters (ZSI) are used to realize both DC voltage boost and DC-AC inversion in single stage with a reduced number of power switching devices. A traditional MPPT control algorithm provides a shoot-through interval which should be inserted in the switching waveforms of the inverter to output the maximum power to the Z-network. At this instant, the voltage across the Z-source capacitor is equal to the output voltage of a PV array at the maximum power point (MPP). The control of the Z-source capacitor voltage beyond the MPP voltage of a PV array is not facilitated in traditional MPPT algorithms. This paper presents a unified MPPT control algorithm to simultaneously achieve MPPT as well as Z-source capacitor voltage control. Development and implementation of the proposed algorithm and a comparison with traditional results are discussed. The effectiveness of the proposed unified MPPT control strategy is implemented in Matlab/Simulink software and verified by experimental results.

원격 급전소에서 발전소 출력을 제어하기 위한 시스템 연구 (A study on the remote MW control of a steam turbine)

  • 김종안;신윤오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.734-736
    • /
    • 1999
  • The electricity demand has been in the trend of increase for the past 30 years except last year due to economic crisis. The central electrical power dispatch center anticipates each and every hour's electricity demand and dispatch every power plant's output(MW) taking into account of the costs, frequency regulation abilities, locations, reliabilities and so on. to meet the demand as quickly as possible. The large portion of the power plants' output is contolled automatically by the AGC(Automatic Generation Control) function which is a part of the EMS(Energy Manage System) computer in the dispatch center. To receive the electrical power dispatch signal from the EMS, a power plant should have a remote MW control feature in the turbine control system or unit master control system. We investigated the AGC function and a power plant's remote MW control configuration.

  • PDF

계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석 (Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System)

  • 노경수;류행수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

입.출력 선형화 기법을 이용한 공기압 실린더의 궤적추적 제어 (Trajectory Tracking Control of A Pneumatic Cylinder Using An Input-Output Linearization Method)

  • 장지성
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.49-56
    • /
    • 2002
  • This study suggests a trajectory tracking controller composed of an input output linearization compensator and a linear controller. The input output linearization compensator is derived from the nonlinear equations of a pneumatic control system and it algebraically transforms a nonlinear system dynamics into a linear one, so that input output characteristics of the control system is linearized regardless of the variation of the operating point and linear control techniques can be applied. The results of nonlinear simulations show that the proposed controller tracks the given trajectories more accurately than a state feedback controller does.

  • PDF

예측 적응제어 기법을 이용한 전기 유압 모터의 제어에 관한 연구 (A Study on the Control of Electro-Hydraulic Motors Using Ahead Predictive Adaptive Control Method)

  • 김병우;허진
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1360-1365
    • /
    • 2011
  • Electro-hydraulic servo motor is used to a lot of in the field of industrial equipment which requires one of the control functions among pressure, flow, and power output. In this paper, linear discrete reference model of the electro-hydraulic servo motor system are made for 1-step ahead predictive control. The parameters of electro-hydraulic servo motor system are estimated using the recursive least square method. 1-step ahead predictive model output of electro-hydraulic servo motor system corresponded to reference model output in spite of estimated parameters are not meet real parameters. Control performance affections are studied due to the forgetting factors variation.

풍력발전용 DFIG의 출력 해석과 정격출력 제어 (Power Analysis & Rated Power Control Method of DFIG for Wind Power Generating)

  • 이진호;이우석;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.111-114
    • /
    • 1999
  • This paper deals with the rated output power using grid-connected Doubly-Fed Induction Generator(DFIG) in the supersynchronous speed regions. The rated output power is controlled by both magnitude and frequency of the voltage fed to the rotor. And this rotor voltage is controlled by control of inverter switching frequency and fire angle. A DFIG generating characteristic is analyzed by simulation of steady-state algebraic equation of equivalent circuit using numerical analysis. And it is compared with results of experiment. Consequently, This paper presented to control method for rated output power of DFIG in variable wind speed.

  • PDF

회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화 (Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain)

  • 김연희;강용철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.